Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies

Javier Moros, J. Javier Laserna*

Universidad de Málaga, Facultad de Ciencias, Departamento de Química Analítica, Campus de Teatinos s/n, 29071 Málaga, Spain

ARTICLE INFO

Article history: Received 12 September 2014 Received in revised form 26 November 2014 Accepted 4 December 2014 Available online 13 December 2014

Keywords: Spectroscopy Data fusion Laser-induced breakdown spectroscopy Raman Standoff

ABSTRACT

Data fusion is the process of combining data gathered from two or more sensors to produce a more specific, comprehensive and unified dataset of the inspected target. On this basis, much has been said about the possible benefits resulting from the use of molecular and atomic information for the detection of explosives. The orthogonal nature of the spectral and compositional information provided by Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) makes them suitable candidates for an optimal combination of their data, thus achieving inferences that are not feasible using a single sensor. The present manuscript evaluates several architectures for the combination of spectral outputs from these two sensors in order to compare the benefits and drawbacks of data fusion for improving the overall identification performance. From the simple assembling (concatenation or addition) of Raman and LIBS spectra to signals' processing on the basis of linear algebra (either the outer product or the outer sum), different identification patterns of several compounds (explosives, potential confusants and supports) have been built. The efficiency on target differentiation by using each of the architectures has been evaluated by comparing the identification yield obtained for all the inspected targets from correlation and similarity measurements. Additionally, a specific code integrated by several of these patterns to identify each compound has also been evaluated. This approach permits to obtain a better knowledge about the identity of an interrogated target, mainly in those decisive cases in which LIBS or Raman cannot be effective separately to reach a decision.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Data fusion commonly refers to a process of combining synergistically or integrating, in the most effective way, observed data that gather from two or more sensors to produce a more specific, comprehensive and unified dataset of an interrogated target [1]. The benefits of data fusion have been used in a wide range of application fields. For instance, in the area of chemoinformatics, data fusion experiments have been made to combine several binary similarity coefficients to get an overall estimate of similarity for searching databases of bioactive molecules [2]. In environmental monitoring, spectral and structural datasets gathered from CASI (compact airborne spectrographic imager) and LIDAR (light detection and ranging) sensors, respectively, have been fused on a pixel level to improve the classification of the floodplain vegetation [3]. Similarly, ¹H NMR (nuclear magnetic resonance) information has been recently combined with mass spectrometry data from liquid [4] and gas [5] chromatography to generate metabolic profiles from analysis of rat urine as well as of cerebrospinal fluid of multiple sclerosis individuals,

* Corresponding author. Tel.: +34 952 13 1881; fax: +34 952 13 2000. *E-mail address:* laserna@uma.es (J. Javier Laserna).

http://dx.doi.org/10.1016/j.talanta.2014.12.001 0039-9140/© 2014 Elsevier B.V. All rights reserved. respectively. Information obtained by ¹H NMR has been also combined with UV–visible spectroscopy data [6] and with isotopic figures [7] to determine banned dyes in culinary spices and to improve the authenticity of wines, correspondingly.

New data fusion structures from chromatographic and spectroscopic data have been also proposed for improving the capability to identify the photoproducts formed and the accuracy in the description of the mechanism driving the photodegradation process [8]. The synergy of Raman and FT-NIR microscopies to enable a more complete visualization of any solid dosage pharmaceutical form has been demonstrated [9]. Likewise, in cultural heritage issues, data-fusion strategies based on the outputs of a Raman/X-ray fluorescence combined instrument, has been investigated for dealing with the classification of ochre pigments [10]. Furthermore, complementary spectra from Raman, IR (infrared) and NMR sources have been assembled for giving a "fused" dataset to an increased understanding and control of an industrial process [11]. Also for solving problems related to food authentication, data collected from near (NIR) and middle (MIR) infrared spectrometers have been processed both, separately and jointly, using chemometrics to demonstrate the synergistic effect from fused spectroscopic datasets for dealing with classification problems [12,13]. In the same vein, data from mass spectra (MS)-based electronic nose (E-nose), a mid-IR optical-tongue

talanta

and a UV–visible sensor have been assembled to deal with differences from sensory properties on beer samples of the same brand and commercialized as a same product, but brewed in four different factories [14]. Equally, a data fusion strategy of combining multiple spectroscopic techniques (NIR, Raman, 2D fluorescence and X-ray fluorescence) has been also investigated for the characterization of soy hydrolysates in mammalian cell cultures [15]. In the area of homeland security, an approach for the combination of the spectral outputs of sensors based on Raman and LIBS (Laser-Induced Breakdown Spectroscopy) in order to improve the identification of explosives and related compounds has been developed [16]. However, despite the improvement on materials distinction from each other by simple linear correlation when molecular information is merged to atomic data, the progress of selectivity towards specificity is still being pursued.

Detection of explosives has attracted considerable attention in recent years [17]. From the standpoint of sensor fusion, the most appealing tools to tackling this scenario have proved to be LIBS [18] and Raman spectroscopy [19]. Together with their versatility to operate under a standoff scheme, both sensing modes offer complete information on the constitution of the sample, that is, elemental composition from the emission spectra and molecular information extracted from scattered radiation. Commonly, to deal with such challenge both techniques are used separately. At these circumstances, that is, when findings are judged on the basis of particular spectral information, the decision about target's identity might be limited. For instance, LIBS has a restricted ability on identify those inspected targets that share elemental composition, as organics [20]. Similarly, although interaction between excitation light and the target might lead to a unique spectral fingerprinting of the material, selectivity of Raman suffers when the same functional group is involved in the composition of the interrogated targets [21]. Clearly, these particular scenarios entail a deficit for each spectroscopic technique, notably when trying to differentiate between explosive and harmless materials.

Assembling and integration of such techniques into a mobile sensor platform using the same laser pulses and gated multichannel detectors to improve identification confidence has been demonstrated [22]. Despite that this fitting of the two sensors allows to simultaneously gather both spectral data coming from the same laser events, the manner in how such information may be manipulated and also associated has still a lot of grounds for concern. The reason is due to some technical incompatibilities, especially when it comes to residue analysis [23]. Indeed, to date, only a few attempts on fusion of these data, although acquired from a sequential interrogation of bulk targets, have been recently published [16,24].

In order to progress, in the present manuscript, several novel architectures on assembling data from Raman and LIBS sensors are described. The strengths and the weaknesses of several estimators built to provide a precise identification of pure materials have been evaluated through correlation and dissimilarity measurements. Results on the implementation of such assets in order to enhance the differentiation and recognition of inspected targets have been discussed. Findings have revealed that the combination of different bidimensional assembling frameworks fused into a unique estimator may provide a reliable attribute to confidently label the identity of each interrogated target.

2. Experimental

2.1. Sensor set-up

The versatile Raman and LIBS configurable set-up for standoff analysis consisted of twins Q-switched Nd:YAG lasers (10 Hz, 532 nm, 400 mJ pulse⁻¹, 5.5 ns pulse width) that were utilized

as irradiative sources. A beam expander (10 \times large output) was employed for first expanding and then focusing the laser beam on the target. Scattered and emitted light from the target was gathered through a home-made Cassegrain telescope (167 cm in length and 24 cm in diameter), which permits converging light on the tip of an optical fiber 600 μm in diameter mounted on a precision linear stage. After collection, light was guided to the entrance port of the proper detection system.

For Raman data collection, a holographic imaging spectrograph (85 mm focal length, f/1.8i, 25 μ m slit) equipped with a volume phase holographic (VPH) grating (model HSG-532-LF) and fitted with an iCCD detector (intensifier tube diameter of 18 mm) was used. For LIBS signal detection, a Czerny–Turner spectrograph (303 mm focal length, f/4, 10 μ m slit) fitted with a 150 lines per mm diffraction grating blazed at 500 nm and an iCCD detector (intensifier tube diameter of 25 mm) was employed.

Raman and LIBS measurements were sequentially obtained for each target after focusing a number of laser pulses of 440 mJ each on sections of ca. 1.00 cm² and 0.02 cm², thus achieving irradiance values of 0.11 GW cm⁻² and 4.73 GW cm⁻², respectively. For Raman data collection, the delay time was set to zero ns, whereas the gate width was set to 800 ns. For LIBS data acquisition, a delay time of 900 ns and an integration time of 9 μ s were established as timing parameters. Experiments were all carried out at standoff distances of 20 m inside a 50 m long partially closed corridor. Data obtained from Andor were exported in text format and analyzed using Matlab[®] (The Mathworks Inc., South Natick, MA, USA). In any case, readers requiring more details are requested to check the reference [23].

2.2. Samples

In order to evaluate the strength and weaknesses on the implementation on data fusion from different strategies, Raman and LIBS representative spectra from pure explosive materials, including 2,6-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), pentaerythritoltetranitrate (PETN) as well as some explosive related compounds (ERCs) such as sodium chlorate (NaClO₃) and potassium chlorate (KClO₃), were registered. In parallel, several non-energetic materials, but subject to confusion with the previous ones from their LIBS responses, such as nylon, wood, riblene (low density polyethylene), anthracene (anth), sodium chloride (NaCl) and potassium chloride (KCl) were also considered.

Samples were primed and arranged for the analysis in their most appropriate bulk form. Thus, DNT, NaClO₃, KClO₃, anth, NaCl and KCl were used as cylindrical pellets of ca. 200 mm² in area and 6 mm in thickness. In addition, RDX base paste explosive was prepared as a sticky mass on the surface of a glass microscope slide (76 mm × – 26 mm), at all times, helping to safeguard dimensions (thickness and area) similar to those achieved for the previously cited pellets. Similar case held true for TNT, from its melted solid form. Finally, PETN, extracted as a ring from a booster, as well as Nylon, wood and Riblene, all them as plates (40 mm × 40 mm × 4 mm), were analyzed in their raw state. In this way, all the targets were tested as bulk materials.

2.3. Raman-LIBS data fusion approaches

The fusion process at the feature level of spectral responses from sensor measurements consists in the generation of a new attribute, that is, a new identity which aims to more clearly identify the interrogated target. To this end, a global descriptor of the compound is generated by fusing the molecular and atomic outputs of a compound when interrogated by Raman and LIBS sensors. In this particular case, although spectral information gathered by our dual sensor, comes from different regions of the sample and the Raman and LIBS responses arise from different laser events, complete spectroscopic information faithfully represents the target under interrogation. To construct the new attributes of each compound, representative Raman and LIBS spectra were used.

For this purpose, first, scattered light resulting from 25 sequential laser pulses on the target surface was accumulated for building up the final Raman response. There was no evidence that the use of these successive laser pulses produced any photo and/or thermal surface degradation. Meanwhile, the emitted light from additional 25 laser-induced plasmas was averaged to yield the LIBS counterpart.

Due to the different dynamic ranges of the Raman and LIBS responses, normalization by scaling between 0 and 1 was considered. It was further verified that performance of the parameters indicating the degree of similarity is preserved, no matter how the normalization approach proceeds. However, such type of scaling not only ensures the distinction between new identifiers on the basis of the different frequencies and wavelengths of the spectral features but also provides an equally input of the molecular and atomic information for the final attribute, whatever the assembling mode used. Without this last, comparison of the new identifiers would be equivalent to compare information from a single sensor, that is, the dataset involving a largest weight in the attribute. A more detailed description on the min-max scaling method may be found in a previous Ref. [16].

For convenience of the reader, the present section has been divided according the vector or matrix nature of the new attribute generated. As starting information for the 4 approaches developed it has taken the intensity values belonging to the Raman (r) and LIBS (l) spectra at each relevant pixel (n=1, 2, 3,...,1665) and arranged into two separate identical-size vectors, named R (Raman) and L (LIBS), respectively.

• New attributes as a first-order vectors

- Vectors concatenation

There are a number of different techniques for synthesizing a fused attribute. The technique used as first instance, concatenative synthesis, relies on concatenation of the Raman and LIBS spectra from each compound to construct its new identifier. The final attribute is constructed from an augmented vector built by correlatively allocating the LIBS data (spanning the spectral range from 320 nm up to 780 nm) together with the Raman counterpart (containing frequencies between 400 cm⁻¹ and 1800 cm⁻¹). Thus, the new identifier consists of a vector of 3330 variables.

$$\begin{bmatrix} r_1 & r_2 & r_3 & r_4 & r_5 & \dots & r_n \end{bmatrix} \begin{bmatrix} l_1 & l_2 & l_3 & l_4 & l_5 & \dots & l_n \end{bmatrix}$$
$$= \begin{bmatrix} r_1 & r_2 & r_3 & r_4 & r_5 & \dots & r_n & l_1 & l_2 & l_3 & l_4 & l_5 & \dots & l_n \end{bmatrix}$$

- Vectors coaddition

Another straightforward process, like the concatenative synthesis, is the coaddition technique. This time, taking advantage on the availability of a same number of variables for both spectra, the sum, pixel to pixel, of Raman and LIBS responses is considered for generating a composite attribute to each compound. Through this procedure, the new attribute preserves their vector form and the number of variables (1665), but changes its shape according to the Raman and LIBS information. Despite that this new attribute is also built from the complete molecular and atomic spectral information, it should be pointed out that it has no longer meaning in terms of spectroscopy.

$$\begin{bmatrix} r_1 & r_2 & r_3 & r_4 & r_5 & \dots & r_n \end{bmatrix} \\ + \begin{bmatrix} l_1 & l_2 & l_3 & l_4 & l_5 & \dots & l_n \end{bmatrix} \\ = \begin{bmatrix} r_1 + l_1 & r_2 + l_2 & r_3 + l_3 & r_4 + l_4 & r_5 + l_5 \dots & r_n + l_n \end{bmatrix}$$

• New attributes as a second-order vectors

- Vectors outer sum

The tensorial sum of two vectors is a way of creating a new space on the basis of sum of integers. As shown below, data produce a fused square array (1665×1665) when associated by summing each pixel of the transposed *L* vector to every pixel of the *R* vector.

$$\begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ \dots \\ r_n \end{bmatrix} \oplus \begin{bmatrix} l_1 & l_2 & l_3 & l_4 & l_5 & \dots & l_n \end{bmatrix}$$
$$= \begin{bmatrix} r_1 + l_1 & r_2 + l_1 & r_3 + l_1 & r_4 + l_1 & r_5 + l_1 & \dots & r_n + l_1 \\ r_1 + l_2 & r_2 + l_2 & r_3 + l_2 & r_4 + l_2 & r_5 + l_2 & \dots & r_n + l_2 \\ r_1 + l_3 & r_2 + l_3 & r_3 + l_3 & r_4 + l_3 & r_5 + l_3 & \dots & r_n + l_3 \\ r_1 + l_4 & r_2 + l_4 & r_3 + l_4 & r_4 + l_4 & r_5 + l_4 & \dots & r_n + l_4 \\ r_1 + l_5 & r_2 + l_5 & r_3 + l_5 & r_4 + l_5 & r_5 + l_5 & \dots & r_n + l_5 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ r_1 + l_n & r_2 + l_n & r_3 + l_n & r_4 + l_n & r_5 + l_n & \dots & r_n + l_n \end{bmatrix}$$

- Vectors outer product

Similarly to the previous approach, the tensorial product (also named outer product) of two vectors allows to create a new space equivalent to multiplication of integers. On this occasion, the new attribute is, again, a 1665-by-1665 block matrix formed from all possible products between the elements of R and those of L.

$$\begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \\ r_{4} \\ r_{5} \\ \dots \\ r_{n} \end{bmatrix} \otimes \begin{bmatrix} l_{1} \quad l_{2} \quad l_{3} \quad l_{4} \quad l_{5} \quad \dots \quad l_{n} \end{bmatrix}$$

$$= \begin{bmatrix} r_{1}l_{1} \quad r_{2}l_{1} \quad r_{3}l_{1} \quad r_{4}l_{1} \quad r_{5}l_{1} \quad \dots \quad r_{n}l_{1} \\ r_{1}l_{2} \quad r_{2}l_{2} \quad r_{3}l_{2} \quad r_{4}l_{2} \quad r_{5}l_{2} \quad \dots \quad r_{n}l_{2} \\ r_{1}l_{3} \quad r_{2}l_{3} \quad r_{3}l_{3} \quad r_{4}l_{3} \quad r_{5}l_{3} \quad \dots \quad r_{n}l_{3} \\ r_{1}l_{4} \quad r_{2}l_{4} \quad r_{3}l_{4} \quad r_{4}l_{4} \quad r_{5}l_{4} \quad \dots \quad r_{n}l_{4} \\ r_{1}l_{5} \quad r_{2}l_{5} \quad r_{3}l_{5} \quad r_{4}l_{5} \quad r_{5}l_{5} \quad \dots \quad r_{n}l_{5} \\ \dots \quad \dots \\ r_{1}l_{n} \quad r_{2}l_{n} \quad r_{3}l_{n} \quad r_{4}l_{n} \quad r_{5}l_{n} \quad \dots \quad r_{n}l_{n} \end{bmatrix}$$

By plotting any of new attributes before mentioned, a final distinct pattern, for a precise identification of each compound, is reached. Again, these new discrete projections have no meaning in terms of spectroscopy. On the whole, these different attributes just

630

Values for the correlation coefficient (*r*) and the root mean square error (*RMSE*) estimated between assayed compounds from their normalized LIBS (top) and Raman (bottom) responses^a.

					Organic co	ompounds					Inorganic c	ompounds	
		DNT	ΤΝΤ	RDX	PETN	nylon	wood	riblene	anth	NaCl	NaClO₃	KCI	KCIO ₃
	DNT		0.1165	0.1222	0.1770	0.0536	0.1340	0.0875	0.1313	0.2105	0.1979	0.1808	0.1889
	ΤΝΤ	0.7902		0.1076	0.1580	0.1597	0.2092	0.1854	0.2292	0.2042	0.1768	0.2091	0.2179
sb	RDX	0.6174	0.7552		0.1171	0.1437	0.1581	0.1508	0.1843	0.1979	0.1815	0.1576	0.1671
unoduu	PETN	0.2199	0.2637	0.5156		0.1852	0.1663	0.1840	0.2115	0.1981	0.1860	0.1827	0.1898
anic co	nylon	0.9612	0.6279	0.5417	0.2534		0.1078	0.0461	0.0948	0.2168	0.2095	0.1738	0.1813
Org	wood	0.7955	0.5233	0.5905	0.5573	0.8568		0.0926	0.1049	0.2250	0.2232	0.1740	0.1698
	riblene	0.9034	0.5053	0.5033	0.2842	0.9741	0.8724		0.0665	0.2127	0.2099	0.1570	0.1639
	anth	0.8718	0.4540	0.4409	0.2609	0.9408	0.8364	0.9661		0.2227	0.2296	0.1640	0.1695
spu	NaCl	0.1336	-0.0058	0.0053	0.1117	0.1771	0.2580	0.2339	0.3396		0.0443	0.1999	0.2011
nodwo	NaClO₃	0.1189	0.0024	0.0113	0.0852	0.1582	0.2646	0.2107	0.3031	0.9855		0.1987	0.2000
ganic c	КСІ	0.3360	0.1190	0.2386	0.1041	0.4065	0.3857	0.4732	0.4755	0.2362	0.2196		0.0342
Inor	KClO₃	0.3231	0.1270	0.2316	0.1205	0.3887	0.4435	0.4545	0.4538	0.2876	0.2903	0.9683	
					Organic c	ompounds					Inorganic o	compounds	
-		DNT	ΤΝΤ	RDX	Organic c PETN	ompounds nylon	wood	riblene	anth	NaCl	Inorganic o NaClO₃	compounds KCl	KClO₃
Γ	DNT	DNT	<i>TNT</i> 0.1044	RDX 0.1464	Organic c PETN 0.1573	ompounds nylon 0.3112	wood 0.1420	<i>riblene</i> 0.2473	<i>anth</i> 0.1342	NaCl 0.1420	Inorganic o NaClO ₃ 0.1533	compounds KCI 0.1420	КСЮ ₃ 0.1539
	DNT TNT	DNT 0.8144	TNT 0.1044	RDX 0.1464 0.1733	Organic c PETN 0.1573 0.1478	ompounds nylon 0.3112 0.2391	wood 0.1420 0.2057	<i>riblene</i> 0.2473 0.1967	<i>anth</i> 0.1342 0.1772	NaCl 0.1420 0.2057	<i>Inorganic o</i> <i>NaClO</i> ₃ 0.1533 0.2069	compounds KCI 0.1420 0.2057	KCIO ₃ 0.1539 0.2066
ds	DNT TNT RDX	DNT 0.8144 0.0220	TNT 0.1044 -0.0116	<i>RDX</i> 0.1464 0.1733	Organic c PETN 0.1573 0.1478 0.1355	ompounds nylon 0.3112 0.2391 0.3180	wood 0.1420 0.2057 0.1357	<i>riblene</i> 0.2473 0.1967 0.2437	anth 0.1342 0.1772 0.1278	NaCl 0.1420 0.2057 0.1357	Inorganic of NaCIO3 0.1533 0.2069 0.1411	compounds KCI 0.1420 0.2057 0.1357	KCIO ³ 0.1539 0.2066 0.1414
spunoduc	DNT TNT RDX PETN	DNT 0.8144 0.0220 -0.0440	TNT 0.1044 -0.0116 0.0406	<i>RDX</i> 0.1464 0.1733 0.2031	Organic c PETN 0.1573 0.1478 0.1355	ompounds nylon 0.3112 0.2391 0.3180 0.2610	wood 0.1420 0.2057 0.1357 0.1754	<i>riblene</i> 0.2473 0.1967 0.2437 0.1930	anth 0.1342 0.1772 0.1278 0.1493	NaCl 0.1420 0.2057 0.1357 0.1754	<i>Inorganic o</i> <i>NaCIO</i> ₃ 0.1533 0.2069 0.1411 0.1748	compounds KCI 0.1420 0.2057 0.1357 0.1754	KCIO3 0.1539 0.2066 0.1414 0.1745
ganic compounds	DNT TNT RDX PETN nylon	DNT 0.8144 0.0220 -0.0440 0.2674	TNT 0.1044 -0.0116 0.0406 0.4230	<i>RDX</i> 0.1464 0.1733 0.2031 0.1116	Organic c PETN 0.1573 0.1478 0.1355 0.2908	ompounds nylon 0.3112 0.2391 0.3180 0.2610	<pre>wood 0.1420 0.2057 0.1357 0.1754 0.3880</pre>	<i>riblene</i> 0.2473 0.1967 0.2437 0.1930 0.1539	anth 0.1342 0.1772 0.1278 0.1493 0.3430	NaCl 0.1420 0.2057 0.1357 0.1754 0.3880	<i>Inorganic o</i> <i>NaCIO</i> ₃ 0.1533 0.2069 0.1411 0.1748 0.3790	compounds KCI 0.1420 0.2057 0.1357 0.1754 0.3880	ксіо ₃ 0.1539 0.2066 0.1414 0.1745 0.3784
Organic compounds	DNT TNT RDX PETN nylon wood	DNT 0.8144 0.0220 -0.0440 0.2674 NaN	TNT 0.1044 -0.0116 0.0406 0.4230 <i>NaN</i>	RDX 0.1464 0.1733 0.2031 0.2031 0.1116 NaN	Organic c PETN 0.1573 0.1478 0.1355 0.2908 NaN	ompounds nylon 0.3112 0.2391 0.3180 0.2610 NaN	<pre>wood 0.1420 0.2057 0.1357 0.1754 0.3880</pre>	<i>riblene</i> 0.2473 0.1967 0.2437 0.1930 0.1539 0.3100	anth 0.1342 0.1772 0.1278 0.1493 0.3430 0.0935	NaCl 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000	Inorganic (NaCIO3 0.1533 0.2069 0.1411 0.1748 0.3790 0.0706	compounds KCI 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000	KCIO3 0.1539 0.2066 0.1414 0.1745 0.3784 0.0732
Organic compounds	DNT TNT RDX PETN nylon wood riblene	DNT 0.8144 0.0220 -0.0440 0.2674 NaN 0.1119	TNT 0.1044 0.0116 0.0406 0.4230 NaN 0.0978	RDX 0.1464 0.1733 0.2031 0.1116 NaN 0.1290	Organic c PETN 0.1573 0.1478 0.1355 0.2908 NaN 0.2258	ompounds nylon 0.3112 0.2391 0.3180 0.2610 NaN 0.5586	 wood 0.1420 0.2057 0.1357 0.1754 0.3880 NaN 	<i>riblene</i> 0.2473 0.1967 0.2437 0.1930 0.1539 0.3100	anth 0.1342 0.1772 0.1278 0.1493 0.3430 0.0935 0.2658	NaCl 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000 0.3100	Inorganic (NaCIO3 0.1533 0.2069 0.1411 0.1748 0.3790 0.0706 0.3032	20000000000000000000000000000000000000	KCIO3 0.1539 0.2066 0.1414 0.1745 0.3784 0.0732 0.3018
Organic compounds	DNT TNT RDX PETN nylon wood riblene anth	DNT 0.8144 0.0220 -0.0440 0.2674 NaN 0.1119 0.0126	TNT 0.1044 0.00116 0.0406 0.4230 NaN 0.0978 -0.0127	RDX 0.1464 0.1733 0.2031 0.2031 0.1116 NaN 0.1290 0.0128	Organic c PETN 0.1573 0.1478 0.1355 0.2908 NaN 0.2258 -0.0066	ompounds nylon 0.3112 0.2391 0.3180 0.2610 NaN 0.5586 0.0192	wood 0.1420 0.2057 0.1357 0.1754 0.3880 NaN NaN	<i>riblene</i> 0.2473 0.1967 0.2437 0.1930 0.1539 0.3100 0.0483	anth 0.1342 0.1772 0.1278 0.1493 0.3430 0.0935 0.2658	NaCl 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000 0.3100 0.0935	Inorganic of NaCIO3 NaCIO3 0.1533 0.2069 0.1411 0.1748 0.3790 0.0706 0.3032 0.1092	20000000000000000000000000000000000000	KCIO3 0.1539 0.2066 0.1414 0.1745 0.3784 0.0732 0.3018 0.1097
nds Organic compounds	DNT TNT RDX PETN nylon wood riblene anth NaCl	DNT 0.8144 0.0220 -0.0440 0.2674 NaN 0.1119 0.0126 NaN	TNT 0.1044 -0.0116 0.0406 0.4230 NaN 0.0978 -0.0127 NaN	RDX 0.1464 0.1733 0.2031 0.2031 0.1116 NaN 0.1290 0.0128 NaN	Organic c PETN 0.1573 0.1478 0.1355 0.2908 NaN 0.2258 -0.0066 NaN	ompounds nylon 0.3112 0.2391 0.3180 0.2610 NaN 0.5586 0.0192 NaN	wood 0.1420 0.2057 0.1357 0.1754 0.3880 NaN NaN NaN	<i>riblene</i> 0.2473 0.1967 0.2437 0.1930 0.1539 0.3100 0.0483 <i>NaN</i>	anth 0.1342 0.1772 0.1278 0.1493 0.3430 0.0935 0.2658	NaCl 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000 0.3100 0.0935	<i>Inorganic o</i> <i>NaCIO</i> ₃ 0.1533 0.2069 0.1411 0.1748 0.3790 0.0706 0.3032 0.1092 0.0706	compounds KCI 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000 0.3100 0.0935 0.0000	KCIO3 0.1539 0.2066 0.1414 0.1745 0.3784 0.0732 0.3018 0.1097 0.0732
ompounds Organic compounds	DNT TNT RDX PETN nylon wood riblene anth NaCl NaClO ₃	DNT 0.8144 0.0220 -0.0440 0.2674 NaN 0.1119 0.0126 NaN -0.0957	TNT 0.1044 -0.0116 0.0406 0.4230 NaN 0.0978 -0.0127 NaN -0.0766	RDX 0.1464 0.1733 0.2031 0.2031 0.1116 NaN 0.1290 0.0128 NaN 0.0318	Organic c PETN 0.1573 0.1478 0.1355 0.2908 NaN 0.2258 -0.0066 NaN 0.0188	ompounds nylon 0.3112 0.2391 0.3180 0.2610 NaN 0.5586 0.0192 NaN 0.0050	wood 0.1420 0.2057 0.1357 0.1754 0.3880 NaN NaN NaN NaN	riblene 0.2473 0.1967 0.2437 0.1930 0.1539 0.3100 0.0483 NaN -0.0247	anth 0.1342 0.1772 0.1278 0.1493 0.3430 0.0935 0.2658 NaN -0.0154	NaCl 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000 0.3100 0.0935 NaN	<i>Inorganic o</i> <i>NaCIO</i> ³ 0.1533 0.2069 0.1411 0.1748 0.3790 0.0706 0.3032 0.1092 0.0706	compounds KCI 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000 0.3100 0.0935 0.0000 0.0000	KCIO3 0.1539 0.2066 0.1414 0.1745 0.3784 0.0732 0.3018 0.1097 0.0732 0.0732
ganic compounds Organic compounds	DNT TNT RDX PETN nylon wood riblene anth NaCl NaClO ₃	DNT 0.8144 0.0220 -0.0440 0.2674 NaN 0.1119 0.0126 NaN -0.0957 NaN	TNT 0.1044 -0.0116 0.0406 0.4230 NaN 0.0978 -0.01127 NaN -0.0766 NaN	RDX 0.1464 0.1733 0.2031 0.2031 0.1116 NaN 0.1290 0.0128 NaN 0.0318 NaN	Organic c PETN 0.1573 0.1478 0.1355 0.2908 NaN 0.2258 -0.0066 NaN 0.0188 NaN	ompounds nylon 0.3112 0.2391 0.3180 0.2610 NaN 0.5586 0.0192 NaN 0.0050 NaN	 wood 0.1420 0.2057 0.1357 0.1754 0.3880 NaN 	riblene 0.2473 0.1967 0.2437 0.1930 0.1539 0.3100 0.0483 NaN -0.0247 NaN	anth 0.1342 0.1772 0.1278 0.1493 0.3430 0.0935 0.2658 NaN -0.0154 NaN	NaCl 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000 0.3100 0.0935 NaN NaN	Inorganic of NaCIO3 0.1533 0.2069 0.1411 0.1748 0.3790 0.0706 0.3032 0.1092 0.0706 NaN	compounds KCI 0.1420 0.2057 0.1357 0.1754 0.3880 0.0000 0.3100 0.0935 0.0000 0.0706	KCIO3 0.1539 0.2066 0.1414 0.1745 0.3784 0.0732 0.3018 0.1097 0.0732 0.0347 0.0732

^a Light-gray cells contain *RMSE* values whereas non colored cells list *r* values. *NaN* (no available number) reflects the impossibility for computing the parameter when the signal is a vector completely composed by zeros.

represent distinct guides which can be used, separately or together, to identify an unknown target.

2.4. Data analysis

The goal of any data fusion approach aimed to enhance the identity of a target is the building of a new attribute, from its sensor responses, that completely differs from the attribute generated for any other target. Assessment of the new attribute quality was carried out by using the correlation coefficient value (denoted by r). Thus, supposing that A and B are two finite-size attributes (either vectors or matrices), ris computed from Eq. (1) as follows:

$$r = \frac{\sum_{m} \sum_{n} (A_{mn} - \overline{A})(B_{mn} - \overline{B})}{\sqrt{\left(\sum_{m} \sum_{n} (A_{mn} - \overline{A})^{2}\right) \left(\sum_{m} \sum_{n} (B_{mn} - \overline{B})^{2}\right)}}$$
(1)

where \overline{A} and \overline{B} are the mean values of the elements composing A and B, respectively. As a result, the closer is the value of r to 1, the higher the similarity between the attributes under consideration and, consequently, more problematic is their identification. However, as r depends only on the shapes of new attributes, not on their magnitudes, an additional measure of the extent to which a pair of attributes is similarly related was also computed through the root mean square error (*RMSE*), which has been a dominant quantitative performance metric in the field of signal processing. The aim of this measure is to compare two attributes by providing a quantitative score that describes the degree of similarity or, conversely, the level of error between them. *RMSE* between two attributes is calculated

from Eq. (2):

$$RMSE = \sqrt{\frac{1}{NM}\sum_{n,m} \{A(n,m) - B(m,n)\}^2}$$
(2)

where *NM* is the total number of variables in each attribute. In this case, the lower the *RMSE* value the greater the similarity between the attributes from compounds being compared. Consequently, the system bears a substantial difficulty in distinguishing them.

These parameters are highly useful for assessing the level of identity for an unknown target via the matching of its attribute and concrete attributes for compounds of interest constructed in advance and included in a short library.

3. Results and discussion

3.1. Differentiating compounds from single technique responses

As discussed elsewhere [23], both Raman and LIBS sometimes may fail on providing a genuine spectral fingerprint to unequivocally identify a compound. In order to tinge this pronouncement, both the LIBS and Raman spectra of a number of explosives and related compounds have been compared using their correlation coefficients and root mean square errors. Table 1 summarizes the corresponding values. As seen, for different pairs of compounds, the exclusive use of information from the LIBS sensor prevents a reliable categorization of a compound as an explosive or a harmless material. According to the standoff spectral response uncertainty, a correlation coefficient of 0.8 was considered a limiting value for discrimination purposes. Decisions on disparity

Fig. 1. Paired comparison of the resulting attributes from the concatenation of the Raman and LIBS normalized information for (A) DNT and nylon and (B) NaClO3 and KClO3.

between compounds whose r values are larger than this threshold might be imprecise. For instance, differentiation between DNT and nylon (0.9612), riblene (0.9034) and anth (0.8718), is unconfident on the sole basis of their LIBS spectra. In a similar fashion, *RMSE* values keep consistently low for the pairs considered; -0.0536, 0.0875, and 0.1313, respectively. Similarly, decisions based on Raman spectra may also be compromised as seen for DNT and TNT or the chlorates examined with respective r values of 0.8144 and 0.8770. To cope with these difficulties, an investigation on new approaches for creating new identification patterns by fusing Raman and LIBS information has been tackled.

3.2. Differentiating compounds using first-order attributes

The easiest way to proceed in data fusion is the concatenation of the spectral information, that is, a correlative allocation of the LIBS outcome together with its Raman counterpart. Fig. 1 depicts an example of the new estimators generated by concatenation for two pairs of interest. The left side represents the Raman contribution to the estimator, whereas the right part accounts for the LIBS involvement. As shown, for the couple DNT–nylon, the LIBS input retains the envisaged similarity between the compounds, whereas the Raman participation acts as the crucial component that may contribute to a successful differentiation between them. In other instances it is the LIBS data set the key factor to discern the compounds as is the case of the pair NaClO₃–KClO₃.

By stacking the paired outcomes at variable level, coaddition of data produces a simple and common output, which acts later as the input for the final decision. Fig. 2 displays the attributes for the case of DNT and NaCl. Differently from the concatenation framework, coadding the data leads to a new identity lacking of direct spectral interpretation. As seen, the molecular and the atomic information intermingle with each other within a new and intricate attribute built for DNT. In contrast, a compound of missing Raman response produces an attribute identical to the LIBS spectrum. This is the case of NaCl shown in the figure.

The effectiveness of all these new attributes for differentiation between compounds is evaluated from the results listed in Table 2. The correlation coefficients together with *RMSE* values for the new estimators are summarized. As reflected, both approaches successfully solve conflicting situations related to organic compounds. For instance, when the performance of the new estimators is compared with the sole use of LIBS information, the *r* values for the pairs DNT–nylon, DNT–riblene and DNT–anth, stand close to 0.6. Simultaneously, their *RMSE* values scale beyond 0.1 on a proportional basis in accordance with the decreasing values of *r*. Raman information produces significant synergistic effects for differentiation.

However, conflicts concerning the differentiation between chloride and chlorate from the same cation remain with r values close to 0.9 and *RMSE* results below 0.1. In this particular case, the new attributes offer only a modest improvement as compared to the simple LIBS information. In other words, the merging of Raman information brings no significant advance in the distinction between such compounds. Hence, this implies the need of alternative approaches for assembling the spectral information to cope with such unfavorable cases.

3.3. Differentiating compounds using second-order attributes

Once evaluated the performance of first-order attributes, fusion approaches were focused on the generation of second-order characteristic estimators for each compound. By building 2D images from these final patterns, new identities for each compound are achieved. Fig. 3 depicts the 2D images generated for DNT and NaCl, respectively, from the outer sum (top) and the outer product (bottom) of their particular Raman and LIBS responses. Since these operations are

Fig. 2. Examples of the resulting attributes from the coaddition of the Raman and LIBS normalized information for (A) DNT and (B) NaCl.

performed on vectors of identical size, the final outcome leads to a square matrix of ca. 2.8 million variables in both instances. As shown, in the case of the outer sum, fusion of paired spectral variables yields a complex additive contribution to each point of the image, thereby highlighting the complete molecular and atomic information. In contrast, when fusion is based on the product of variables, any lack of spectral features within one of the counterparts cancels the information of the other. That is the reason why, in the case of DNT, only the concurring atomic and molecular signals account for the emphasized features within the final 2D image. On the contrary, for NaCl, the absence of Raman response leads to a final image consisting solely of zeros, the attribute in this case still being fully descriptive.

The significance of these 2D images on compound differentiation may be assessed from the results reported in Table 3. The similarity between the corresponding 2D images was evaluated by means of values of r and *RMSE*. As observed, the sum-based identifiers perform similarly to the corresponding first order attributes (see Table 2). For instance, correspondence between DNT and nylon, riblene and anth, fits to r values of 0.6727 (0.5088 and 0.6404), 0.6342 (0.5472 and 0.6119) and 0.6628 (0.6265 and 0.6795), respectively. This evidence is also supported by parallel *RMSE* values. Something similar holds true for the *chloride–chlorate* pairs for

Values for the correlation coefficient (*r*) and the root mean square error (*RMSE*) estimated between assayed compounds from first-order attributes generated by concatenation (top) and coaddition (bottom) of their Raman and LIBS responses^a.

	[Organic r	naterials					Inorganic	materials	
		DNT	TNT	RDX	PETN	nylon	wood	riblene	anth	NaCl	NaClO₃	KCI	KCIO ₃
	DNT		0.1106	0.1349	0.1674	0.2233	0.1380	0.1855	0.1328	0.1796	0.1770	0.1626	0.1723
naterials	ΤΝΤ	0.6306		0.1442	0.1530	0.2033	0.2075	0.1911	0.2049	0.2050	0.1925	0.2074	0.2123
	RDX	0.3893	0.2072		0.1266	0.2468	0.1473	0.2026	0.1586	0.1697	0.1626	0.1471	0.1548
	PETN	0.1195	0.1744	0.3592		0.2263	0.1709	0.1885	0.1831	0.1871	0.1804	0.1791	0.1823
ganic n	nylon	0.5088	0.6345	0.1700	0.2669		0.2847	0.1136	0.2517	0.3143	0.3062	0.3006	0.2967
ð	wood	0.5773	-0.0502	0.4610	0.3041	0.0882		0.2287	0.0994	0.1591	0.1655	0.1230	0.1307
	riblene	0.5472	0.4240	0.2421	0.2734	0.8211	0.2948		0.1937	0.2658	0.2608	0.2457	0.2428
	anth	0.6265	- 0.0261	0.3604	0.1279	0.2028	0.8374	0.4126		0.1708	0.1798	0.1335	0.1428
s	NaCl	0.1478	-0.2152	0.0990	0.0444	-0.1433	0.4618	-0.0077	0.4708		0.0589	0.1414	0.1513
materia	NaClO₃	0.0964	-0.1732	0.0847	0.0371	- 0.0896	0.3799	0.0106	0.3694	0.8955		0.1491	0.1435
rganic I	КСІ	0.2620	-0.3114	0.2703	-0.0054	-0.2412	0.6671	-0.0455	0.6289	0.4836	0.3716		0.0571
lnc	KClO₃	0.2264	-0.2821	0.2548	0.0138	-0.1985	0.6409	-0.0188	0.5720	0.4721	0.5080	0.9204	
					Organic	materials					Inorganic	: materials	
		DNT	TNT	RDX	Organic PETN	materials nylon	wood	riblene	anth	NaCl	Inorganic NaClO₃	: materials KCl	KClO₃
	DNT	DNT	<i>TNT</i> 0.1243	RDX 0.1685	Organic PETN 0.2142	<i>materials</i> nylon 0.3396	wood 0.1440	<i>riblene</i> 0.3004	<i>anth</i> 0.1655	NaCl 0.2441	Inorganic NaCIO ₃ 0.2496	materials KCI 0.1974	KCIO ₃ 0.2229
	DNT TNT	DNT 0.7344	TNT 0.1243	<i>RDX</i> 0.1685 0.1645	Organic PETN 0.2142 0.1897	<i>materials</i> <i>nylon</i> 0.3396 0.3524	wood 0.1440 0.1889	<i>riblene</i> 0.3004 0.3234	<i>anth</i> 0.1655 0.2168	NaCl 0.2441 0.2334	Inorganic NaClO₃ 0.2496 0.2367	<i>materials</i> <i>KCI</i> 0.1974 0.1838	ксю₃ 0.2229 0.2105
s	DNT TNT RDX	DNT 0.7344 0.5024	TNT 0.1243 0.3460	<i>RDX</i> 0.1685 0.1645	Organic PETN 0.2142 0.1897 0.1856	materials nylon 0.3396 0.3524 0.3504	wood 0.1440 0.1889 0.1580	<i>riblene</i> 0.3004 0.3234 0.3012	<i>anth</i> 0.1655 0.2168 0.1896	NaCl 0.2441 0.2334 0.2151	Inorganic NaClO3 0.2496 0.2367 0.2155	c materials KCI 0.1974 0.1838 0.1774	KCIO 3 0.2229 0.2105 0.1955
naterials	DNT TNT RDX PETN	DNT 0.7344 0.5024 0.3455	TNT 0.1243 0.3460 0.3323	<i>RDX</i> 0.1685 0.1645 0.4038	Organic PETN 0.2142 0.1897 0.1856	materials nylon 0.3396 0.3524 0.3504 0.3179	<pre>wood 0.1440 0.1889 0.1580 0.1693</pre>	<i>riblene</i> 0.3004 0.3234 0.3012 0.2790	<i>anth</i> 0.1655 0.2168 0.1896 0.2063	NaCl 0.2441 0.2334 0.2151 0.2578	Inorganic NaCIO3 0.2496 0.2367 0.2155 0.2585	materials KCI 0.1974 0.1838 0.1774 0.2078	KCIO3 0.2229 0.2105 0.1955 0.2112
rganic materials	DNT TNT RDX PETN nylon	DNT 0.7344 0.5024 0.3455 0.6404	TNT 0.1243 0.3460 0.3323 0.3772	RDX 0.1685 0.1645 0.1645 0.4038 0.4137 0.4137	Organic PETN 0.2142 0.1897 0.1856 0.4066	materials nylon 0.3396 0.3524 0.3504 0.3179	 wood 0.1440 0.1889 0.1580 0.1693 0.3429 	<i>riblene</i> 0.3004 0.3234 0.3012 0.2790 0.1428	anth 0.1655 0.2168 0.1896 0.2063 0.2681	NaCl 0.2441 0.2334 0.2151 0.2578 0.4406	Inorganic NaCIO3 0.2496 0.2367 0.2155 0.2585 0.4518	materials KCI 0.1974 0.1838 0.1774 0.2078 0.3679	KCIO3 0.2229 0.2105 0.1955 0.2112 0.3603
Organic materials	DNT TNT RDX PETN nylon wood	DNT 0.7344 0.5024 0.3455 0.6404 0.6859	TNT 0.1243 0.3460 0.3323 0.3772 0.3266	RDX 0.1685 0.1645 0.1645 0.4038 0.4137 0.5669	Organic PETN 0.2142 0.1897 0.1856 0.4066 0.6436	materials nylon 0.3396 0.3524 0.3504 0.3179 0.7075	 wood 0.1440 0.1889 0.1580 0.1693 0.3429 	<i>riblene</i> 0.3004 0.3234 0.3012 0.2790 0.1428 0.2908	anth 0.1655 0.2168 0.1896 0.2063 0.2681 0.1466	NaCl 0.2441 0.2334 0.2151 0.2578 0.4406 0.2250	Inorganic NaClO ₃ 0.2496 0.2367 0.2155 0.2585 0.4518 0.2224	anaterials KCI 0.1974 0.1838 0.1774 0.2078 0.3679 0.1740	KCIO3 0.2229 0.2105 0.1955 0.2112 0.3603 0.1868
Organic materials	DNT TNT RDX PETN nylon wood riblene	DNT 0.7344 0.5024 0.3455 0.6404 0.6859 0.6119	TNT 0.1243 0.3460 0.3323 0.3772 0.3266 0.2086	RDX 0.1685 0.1645 0.4038 0.4137 0.5669 0.4639	Organic PETN 0.2142 0.1897 0.1856 0.4066 0.6436 0.3941	materials nylon 0.3396 0.3524 0.3504 0.3179 0.3179	wood 0.1440 0.1889 0.1580 0.1693 0.3429 0.3429	<i>riblene</i> 0.3004 0.3234 0.3012 0.2790 0.1428 0.2908	<i>anth</i> 0.1655 0.2168 0.1896 0.2063 0.2681 0.1466 0.2239	NaCl 0.2441 0.2334 0.2151 0.2578 0.4406 0.2250 0.4028	Inorganic NaClO3 0.2496 0.2367 0.2155 0.2585 0.4518 0.2224 0.4099	materials KCI 0.1974 0.1838 0.1774 0.2078 0.3679 0.1740 0.3239	KCIO3 0.2229 0.2105 0.1955 0.2112 0.3603 0.1868 0.3157
Organic materials	DNT TNT RDX PETN nylon wood riblene anth	DNT 0.7344 0.5024 0.3455 0.6404 0.6859 0.6119 0.6795	TNT 0.1243 0.3460 0.3323 0.3772 0.3266 0.2086 0.2480	RDX 0.1685 0.1645 0.4038 0.4038 0.4137 0.5669 0.4639 0.4746	Organic PETN 0.2142 0.1897 0.1856 0.4066 0.6436 0.3941 0.3913	materials nylon 0.3396 0.3524 0.3504 0.3179 0.3179 0.3200 0.8200 0.7726	 wood 0.1440 0.1889 0.1580 0.1693 0.3429 0.3429 0.7747 0.7873 	<i>riblene</i> 0.3004 0.3234 0.3012 0.2790 0.1428 0.2908 0.7909	anth 0.1655 0.2168 0.1896 0.2063 0.2681 0.1466 0.2239	NaCl 0.2441 0.2334 0.2151 0.2578 0.4406 0.2250 0.4028 0.2656	Inorganic NaClO3 0.2496 0.2367 0.2155 0.2585 0.4518 0.2224 0.4099 0.2725	materials KCI 0.1974 0.1838 0.1774 0.2078 0.3679 0.1740 0.3239 0.1990	KCIO3 0.2229 0.2105 0.1955 0.2112 0.3603 0.1868 0.3157 0.2106
Is Organic materials	DNT TNT RDX PETN nylon wood riblene anth NaCl	DNT 0.7344 0.5024 0.3455 0.6404 0.6859 0.6119 0.6795 0.1613	TNT 0.1243 0.3460 0.3460 0.3323 0.3772 0.3266 0.2086 0.2480 0.0695	RDX 0.1685 0.1645 0.4038 0.4038 0.4038 0.4137 0.5669 0.4639 0.4746 0.3053	Organic PETN 0.2142 0.1897 0.1856 0.4066 0.6436 0.3941 0.3913 0.2864	materials nylon 0.3396 0.3524 0.3504 0.3179 0.3179 0.7075 0.8200 0.7726 0.4112	 wood 0.1440 0.1889 0.1580 0.1693 0.3429 0.3429 0.7747 0.7873 0.2580 	<i>riblene</i> 0.3004 0.3234 0.3012 0.2790 0.1428 0.2908 0.7909 0.3333	anth 0.1655 0.2168 0.1896 0.2063 0.2681 0.1466 0.2239	NaCl 0.2441 0.2334 0.2151 0.2578 0.4406 0.2250 0.4028 0.2656	Inorganic NaClO3 0.2496 0.2367 0.2155 0.2585 0.4518 0.2224 0.4099 0.2725 0.0769	anaterials KCI 0.1974 0.1838 0.1774 0.2078 0.3679 0.1740 0.3239 0.1990 0.1999	KCIO3 0.2229 0.2105 0.1955 0.2112 0.3603 0.1868 0.3157 0.2106 0.2257
materials Organic materials	DNT TNT RDX PETN nylon wood riblene anth NaCl NaClO ₃	DNT 0.7344 0.5024 0.3455 0.6404 0.6859 0.6119 0.6795 0.1613 0.1079	TNT 0.1243 0.3460 0.3460 0.3323 0.3772 0.3266 0.2086 0.2480 0.0695 0.0245	RDX 0.1685 0.1645 0.1645 0.4038 0.4038 0.4038 0.4038 0.4137 0.5669 0.4639 0.4746 0.3053 0.3059	Organic PETN 0.2142 0.1897 0.1856 0.4066 0.6436 0.3941 0.3913 0.2864 0.3024	materials nylon 0.3396 0.3524 0.3504 0.3179 0.3179 0.3200 0.7726 0.4112 0.3601	 wood 0.1440 0.1889 0.1580 0.1693 0.3429 0.3429 0.7747 0.7873 0.2580 0.2737 	riblene 0.3004 0.3234 0.3012 0.2790 0.1428 0.2908 0.7909 0.3333 0.3208	anth 0.1655 0.2168 0.1896 0.2063 0.2681 0.1466 0.2239 0.3150 0.2780	NaCl 0.2441 0.2334 0.2151 0.2578 0.4406 0.2250 0.4028 0.2656 0.8903	Inorganic NaClO3 0.2496 0.2367 0.2155 0.2585 0.4518 0.2224 0.4099 0.2725 0.0769	materials KCI 0.1974 0.1838 0.1774 0.2078 0.3679 0.1740 0.3239 0.1990 0.1999 0.1967	KCIO3 0.2229 0.2105 0.1955 0.2112 0.3603 0.1868 0.3157 0.2106 0.2257 0.2038
vganic materials Organic materials	DNT TNT RDX PETN nylon wood riblene anth NaCl NaClO ₃	DNT 0.7344 0.5024 0.3455 0.6404 0.6859 0.6119 0.6795 0.1613 0.1079 0.2064	TNT 0.1243 0.3460 0.3323 0.3772 0.3266 0.2086 0.2480 0.0695 0.0245 0.0114	RDX 0.1685 0.1645 0.1645 0.4038 0.4038 0.4038 0.4038 0.4137 0.5669 0.4639 0.4746 0.3053 0.3059 0.1772	Organic PETN 0.2142 0.1897 0.1856 0.4066 0.6436 0.3941 0.3913 0.2864 0.3024 0.1794	materials nylon 0.3396 0.3524 0.3504 0.3504 0.3179 0.3179 0.3200 0.7075 0.8200 0.7726 0.4112 0.3601 0.3819	 wood 0.1440 0.1889 0.1580 0.1693 0.3429 0.3429 0.7747 0.7873 0.2580 0.2737 0.3857 	<i>riblene</i> 0.3004 0.3234 0.3012 0.2790 0.1428 0.2908 0.7909 0.3333 0.3208 0.3611	anth 0.1655 0.2168 0.1896 0.2063 0.2681 0.1466 0.2239 0.3150 0.2780 0.4085	NaCl 0.2441 0.2334 0.2151 0.2578 0.4406 0.2250 0.4028 0.2656 0.8903 0.2362	Inorganic NaClO ₃ 0.2496 0.2367 0.2155 0.2585 0.4518 0.2224 0.4099 0.2725 0.0769	materials KCI 0.1974 0.1838 0.1774 0.2078 0.3679 0.1740 0.3239 0.1990 0.1999 0.1999	KCIO3 0.2229 0.2105 0.1955 0.2112 0.3603 0.1868 0.3157 0.2106 0.2257 0.2038 0.0823

^a Light-gray cells contain RMSE values whereas non colored cells list the r values.

Fig. 3. Examples of the second order estimators resulting either from the outer sum (top) and the outer product (bottom) of the particular Raman and LIBS responses for DNT (on the left) and NaCl (on the right).

which such assembling still fails to satisfactorily solve their sorting, as revealed by *r* values larger than 0.8.

A different instance occurs with the product-based images. While these new identities seem limited in their identificative abilities, their manifested specificities are much larger than those of sum 2D images. Proof of this can be found in the markedly shrink of the r values for the pairs DNT-riblene and DNT-anth, 0.4703 and 0.2271, respectively. Likewise, in the cases of the pairs NaClO₃-NaCl and KClO₃-KCl, the lack of Raman response for chlorides results in a positive synergy in the final 2D estimator for their subsequent differentiation from their respective chlorates. Due to the infinitesimal impact of quadratic residuals, dissimilarity rates (RMSE) between these product-based 2D images are one order of magnitude lower than those of the other attributes. Though this circumstance could suggest a larger similarity between the identities being compared, the correlation values demonstrate that such a fusion process generates new attributes, which lead to a correct distinction between those compounds. A significant limitation of the product-based approach arises for compounds lacking of a Raman response. Under these circumstances, the final outcome of the assembling procedure is a zero (null) matrix, thereby voiding any benefit provided by their LIBS information: for instance, NaCl is identical to KCl, in spite of the large difference in their atomic composition. Notwithstanding this, second order data assembling is more favorable to solve the most conflicting cases, that is, between explosives and confusants.

3.4. Peer-to-peer assessment of image quality

Having assessed the differentiation capabilities of these new 2D images, their quality for identification purposes was contrasted with 2D attributes built beforehand [16]. To that end, the universal image index of quality (IOQ) proposed by Wang and Bovik was used [25]. With a value range of [-1, 1], such index denotes the

matching between two images, the closer the value to 1 the more similar are the images. The resulting outcomes from this peer comparison are summarized in Table 4.

Consider the distinction between hazardous (DNT, TNT, RDX and PETN) and harmless (nylon, wood, riblene and anth) organics. When using 2D images based on the outer sum, no identity differences between the explosives and anthracene are noticed (IOQ outcome above the limiting value of 0.8 needed for discrimination). Similar holds true for other pairs like DNT-wood and PETN-riblene. In contrast, hazardous organics are discernible when using any of the other two 2D estimators; in particular the task is much easier when using the attribute based on the outer product (values of IOQ always below 0.7). Furthermore, image quality indices for these last 2D attributes indicate that distinction between organics, whatever their nature, can be achieved. Such a circumstance enables to progress from a discrete classification according to the hazardous nature towards an accurate identity assignment. This property is highly beneficial in the fight against the threats.

In the case of inorganic salts, any of the 2D attributes is valid to identify sodium chlorate and potassium chlorate, thereby allowing the categorization of a manufactured explosive. As listed in Table 4, even the largest IOQ value of 0.5826 significantly departs from the 0.8 limiting value established for discrimination purposes. However, only the 2D estimator built through the outer product-based approach allows differentiating between cationically-related chlorates and chlorides (IOQ values close to 0).

Summarizing, while the outer-product 2D image elucidates the vast majority of targets, the efficient performance of the other 2D estimators invites to consider the fusion of such attributes as a possible way forward to achieve further synergies. In other words, intermesh the 2D images looking for creating of an almost exclusive identifying pattern for each target. The final purpose is to build a library of identity patterns, thereby enabling to collate, through linear correlation, the unknown interrogated target against those stored.

Values for the correlation coefficient (r) and the root mean square error (*RMSE*) estimated between 2D images (used as characteristic fingerprint) of assayed compounds and generated from the outer sum (top) and from the outer product (bottom) of their corresponding normalized Raman and LIBS responses^a.

					Organic	materials					Inorganic	materials	
		DNT	TNT	RDX	PETN	nylon	wood	riblene	anth	NaCl	NaClO₃	KCI	KCIO ₃
	DNT		0.1193	0.1907	0.2389	0.3353	0.1547	0.2970	0.1699	0.2544	0.2584	0.1943	0.2161
	TNT	0.7770		0.1705	0.2087	0.3395	0.1939	0.3155	0.2187	0.2497	0.2500	0.1892	0.2097
<u>ه</u>	RDX	0.3763	0.3526		0.1774	0.3565	0.1786	0.3098	0.2120	0.2458	0.2430	0.1756	0.1932
naterial	PETN	0.1295	0.1565	0.3853		0.3297	0.1953	0.2870	0.2265	0.2703	0.2733	0.2058	0.2149
ganic n	nylon	0.6727	0.5172	0.3378	0.2666		0.3533	0.1496	0.2902	0.4645	0.4715	0.3739	0.3661
ð	wood	0.6493	0.3407	0.4307	0.4488	0.6178		0.2983	0.1483	0.2250	0.2265	0.1740	0.1859
	riblene	0.6346	0.3098	0.3489	0.2639	0.7957	0.7058		0.2322	0.4131	0.4214	0.3196	0.3131
	anth	0.6628	0.2706	0.3015	0.1934	0.6341	0.7758	0.7356		0.2642	0.2738	0.1931	0.2037
ls	NaCl	0.1090	-0.0038	0.0038	0.0899	0.1277	0.2580	0.1892	0.3150		0.0779	0.1999	0.2217
materia	NaClO₃	0.0632	-0.0239	0.0169	0.0666	0.1042	0.2382	0.1471	0.2505	0.8870		0.2019	0.2041
organic	ксі	0.2743	0.0775	0.1740	0.0839	0.2931	0.3857	0.3829	0.4411	0.2362	0.1977		0.0819
lnc	KClO₃	0.2043	0.0430	0.1575	0.0883	0.2406	0.3916	0.3195	0.3693	0.2539	0.4102	0.8549	
					Organic r	naterials					Inorganic	materials	
		DNT	TNT	RDX	Organic r PETN	naterials nylon	wood	riblene	anth	NaCl	Inorganic NaClO₃	materials KCl	KClO₃
	DNT	DNT	<i>TNT</i> 0.0187	RDX 0.0294	Organic r PETN 0.0356	naterials nylon 0.0718	wood 0.0278	<i>riblene</i> 0.0622	<i>anth</i> 0.0304	NaCl 0.0278	Inorganic NaClO₃ 0.0299	<i>materials</i> <i>KCI</i> 0.0278	KCIO ₃ 0.0323
Γ	DNT TNT	DNT 0.6969	<i>TNT</i> 0.0187	RDX 0.0294 0.0249	Organic r PETN 0.0356 0.0321	naterials nylon 0.0718 0.0744	wood 0.0278 0.0235	<i>riblene</i> 0.0622 0.0654	<i>anth</i> 0.0304 0.0292	NaCl 0.0278 0.0235	Inorganic NaClO3 0.0299 0.0259	materials KCI 0.0278 0.0235	KCIO₃ 0.0323 0.0285
ls	DNT TNT RDX	DNT 0.6969 0.1791	TNT 0.0187 0.2861	RDX 0.0294 0.0249	Organic r PETN 0.0356 0.0321 0.0285	naterials nylon 0.0718 0.0744 0.0779	wood 0.0278 0.0235 0.0235	<i>riblene</i> 0.0622 0.0654 0.0655	anth 0.0304 0.0292 0.0290	NaCl 0.0278 0.0235 0.0235	Inorganic NaClO3 0.0299 0.0259 0.0255	materials KCI 0.0278 0.0235 0.0235	KCIO₃ 0.0323 0.0285 0.0276
materials	DNT TNT RDX PETN	DNT 0.6969 0.1791 0.0757	TNT 0.0187 0.2861 0.1624	RDX 0.0294 0.0249 0.0249 0.0249	Organic r PETN 0.0356 0.0321 0.0285	naterials nylon 0.0718 0.0744 0.0779 0.0760	wood 0.0278 0.0235 0.0235 0.0320	<i>riblene</i> 0.0622 0.0654 0.0655 0.0632	anth 0.0304 0.0292 0.0290 0.0337	NaCl 0.0278 0.0235 0.0235 0.0235	Inorganic NaClO3 0.0299 0.0259 0.0255 0.0331	materials KCI 0.0278 0.0235 0.0235 0.0320	KCIO₃ 0.0323 0.0285 0.0276 0.0345
rganic materials	DNT TNT RDX PETN nylon	DNT 0.6969 0.1791 0.0757 0.5653	TNT 0.0187 0.2861 0.1624 0.5219	RDX 0.0294 0.0249 0.0249 0.02803 0.2803	Organic r PETN 0.0356 0.0321 0.0285 0.0285	naterials nylon 0.0718 0.0744 0.0779 0.0760	wood 0.0278 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235	riblene 0.0622 0.0654 0.0655 0.0632 0.0632	anth 0.0304 0.0292 0.0290 0.0337 0.0756	NaCl 0.0278 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235	Inorganic NaClO3 0.0299 0.0259 0.0255 0.0331 0.0864	materials KCI 0.0278 0.0235 0.0235 0.0235 0.0320 0.0868	KCIO3 0.0323 0.0285 0.0276 0.0345 0.0858
Organic materials	DNT TNT RDX PETN nylon wood	DNT 0.6969 0.1791 0.0757 0.5653 NaN	TNT 0.0187 0.2861 0.1624 0.5219 NaN	RDX 0.0294 0.0249 0.0249 0.02803 0.2803 0.2652 NaN	Organic r PETN 0.0356 0.0321 0.0285 0.0285 0.2213 NaN	naterials nylon 0.0718 0.0744 0.0779 0.0760 NaN	<pre>wood 0.0278 0.0235 0.0235 0.0320 0.0868</pre>	riblene 0.0622 0.0654 0.0655 0.0632 0.0632 0.0362 0.0362	anth 0.0304 0.0292 0.0290 0.02307 0.0337 0.0756 0.0265	NaCl 0.0278 0.0235 0.0235 0.0235 0.0235 0.0236 0.0320 0.0868 0.0000	Inorganic NaClO3 0.0299 0.0259 0.0255 0.0331 0.0864 0.0120	materials KCI 0.0278 0.0235 0.0235 0.0235 0.0235 0.0235 0.0236 0.0320 0.0868 0.0000	KCIO₃ 0.0323 0.0285 0.0276 0.0345 0.0858 0.0181
Organic materials	DNT TNT RDX PETN nylon wood riblene	DNT 0.6969 0.1791 0.0757 0.5653 NaN 0.4703	TNT 0.0187 0.2861 0.1624 0.5219 NaN 0.3602	RDX 0.0294 0.0249 0.02803 0.2803 0.2652 NaN 0.2560	Organic r PETN 0.0356 0.0321 0.0285 0.2213 NaN 0.2311	naterials nylon 0.0718 0.0744 0.0779 0.0760 NaN 0.8586	wood 0.0278 0.0235 0.0235 0.0235 0.0320 0.0868 NaN	riblene 0.0622 0.0654 0.0655 0.0632 0.0362 0.0362	anth 0.0304 0.0292 0.0290 0.0337 0.0756 0.0265 0.0628	NaCl 0.0278 0.0235 0.0235 0.0235 0.0235 0.0320 0.0868 0.0000 0.0743	Inorganic NaCIO3 0.0299 0.0259 0.0255 0.0331 0.0864 0.0120 0.0740	materials KCI 0.0278 0.0235 0.0235 0.0235 0.0235 0.0320 0.0868 0.0000 0.0743	KCIO3 0.0323 0.0285 0.0276 0.0345 0.0858 0.0181 0.0733
Organic materials	DNT TNT RDX PETN nylon wood riblene anth	DNT 0.6969 0.1791 0.0757 0.5653 NaN 0.4703 0.2271	TNT 0.0187 0.2861 0.1624 0.5219 NaN 0.3602 0.1583	RDX 0.0294 0.0249 0.02803 0.2803 0.2652 NaN 0.2560 0.1060	Organic r PETN 0.0356 0.0321 0.0285 0.2213 NaN 0.2311 0.0853	naterials nylon 0.0718 0.0744 0.0779 0.0760 NaN 0.8586 0.3739	wood 0.0278 0.0235 0.0235 0.0235 0.0320 0.0868 NaN NaN	riblene 0.0622 0.0655 0.0655 0.0632 0.0362 0.0362 0.0372	anth 0.0304 0.0292 0.0290 0.0337 0.0756 0.0265 0.0628	NaCl 0.0278 0.0235 0.0235 0.0235 0.0320 0.0368 0.0000 0.0743 0.0265	Inorganic NaCIO3 0.0299 0.0259 0.0255 0.0331 0.0864 0.0120 0.0740 0.0282	materials KCI 0.0278 0.0235 0.0235 0.0235 0.0320 0.0868 0.0000 0.0743 0.0265	KCIO3 0.0323 0.0285 0.0276 0.0345 0.0858 0.0181 0.0733 0.0303
organic materials	DNT TNT RDX PETN nylon wood riblene anth NaCI	DNT 0.6969 0.1791 0.0757 0.5653 NaN 0.4703 0.2271 NaN	TNT 0.0187 0.2861 0.2861 0.1624 0.5219 NaN 0.3602 0.1583 NaN	RDX 0.0294 0.0249 0.0249 0.2803 0.2652 NaN 0.2560 0.1060 NaN	Organic r PETN 0.0356 0.0321 0.0285 0.0285 0.2213 NaN 0.2311 0.0853 NaN	naterials nylon 0.0718 0.0744 0.0779 0.0760 NaN 0.8586 0.3739 NaN	wood 0.0278 0.0235 0.0235 0.0235 0.0320 0.0868 NaN NaN NaN NaN	riblene 0.0622 0.0654 0.0655 0.0632 0.0362 0.03743 0.03972 NaN	anth 0.0304 0.0292 0.0290 0.0290 0.0265 0.0628 NaN	NaCl 0.0278 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0320 0.0320 0.0320 0.0320 0.03688 0.0000 0.0743 0.0265	Inorganic NaCIO3 0.0299 0.0259 0.0255 0.0331 0.0864 0.0120 0.0740 0.0282 0.0120	materials KCI 0.0278 0.0235 0.0235 0.0235 0.0320 0.0868 0.0000 0.0743 0.0265 0.0000	KCIO3 0.0323 0.0285 0.0276 0.0345 0.0858 0.0181 0.0303 0.0303
materials Organic materials	DNT TNT RDX PETN nylon wood riblene anth NaCl NaClO3	DNT 0.6969 0.1791 0.0757 0.5653 NaN 0.4703 0.2271 NaN -0.0200	TNT 0.0187 0.2861 0.2861 0.1624 0.5219 NaN 0.3602 0.1583 NaN 0.1583 NaN 0.01583 NaN	RDX 0.0294 0.0249 0.0249 0.2803 0.2652 NaN 0.2560 0.1060 NaN 0.1060 NaN 0.0131	Organic r PETN 0.0356 0.0321 0.0285 0.0285 0.2213 NaN 0.2311 0.0853 NaN 0.0181	naterials nylon 0.0718 0.0744 0.0779 0.0760 NaN 0.8586 0.3739 NaN 0.0280	wood 0.0278 0.0235 0.0235 0.0320 0.0868 NaN NaN NaN NaN	riblene 0.0622 0.0654 0.0655 0.0632 0.0632 0.0362 0.0362 0.03743 0.3972 NaN 0.0292	anth 0.0304 0.0292 0.0290 0.0290 0.0265 0.0265 0.0628 NaN 0.0195	NaCl 0.0278 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0265 NaN	Inorganic NaCIO3 0.0299 0.0259 0.0255 0.0331 0.0864 0.0120 0.0740 0.0282 0.0120	materials KCI 0.0278 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0320 0.0320 0.0320 0.0468 0.004120	KCIO3 0.0323 0.0285 0.0276 0.0345 0.0858 0.0181 0.0303 0.0181 0.0181 0.0181
organic materials Organic materials	DNT TNT RDX PETN nylon wood riblene anth NaCl NaClO ₃	DNT 0.6969 0.1791 0.0757 0.5653 NaN 0.4703 0.2271 NaN -0.0200 NaN	TNT 0.0187 0.2861 0.2861 0.5219 NaN 0.3602 0.1583 NaN 0.0124 NaN	RDX 0.0294 0.0249 0.0249 0.2803 0.2652 NaN 0.2560 0.1060 NaN 0.0131 NaN	Organic r PETN 0.0356 0.0321 0.0285 0.2213 NaN 0.2311 0.0853 NaN 0.0181 NaN	naterials nylon 0.0718 0.0744 0.0779 0.0760 NaN 0.8586 0.3739 NaN 0.0280 NaN	wood 0.0278 0.0235 0.0235 0.0235 0.0320 0.0868 NaN NaN	riblene 0.0622 0.0655 0.0655 0.0632 0.0632 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 NaN 0.0292 NaN	anth 0.0304 0.0292 0.0290 0.0337 0.0756 0.0265 0.0628 NaN 0.0195 NaN	NaCl 0.0278 0.0235 0.0235 0.0235 0.0320 0.0320 0.0368 0.0000 0.0743 0.0265 NaN NaN	Inorganic NaCIO3 0.0299 0.0259 0.0255 0.0331 0.0864 0.0120 0.0282 0.0120 NaN	materials KCI 0.0278 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0235 0.0320 0.0868 0.0000 0.0743 0.0265 0.0000 0.0120	KCIO₃ 0.0323 0.0285 0.0276 0.0345 0.0858 0.0181 0.0303 0.0181 0.0156 0.0181

^a Light-gray cells contain *RMSE* values whereas non colored cells list *r* values. *NaN* (no available number) reflects the impossibility for computing the parameter when the signal is a matrix completely composed by zeros.

Comparison of the universal image index of quality (IOQ) from the second-order attributes generated for several compounds^a.

					Orgai	nic compou	nds				Inorgai	nic compou	unds	
		DNT	TNT	RD	C PET	N nyl	on woo	od rible	ne an	th NaC	l NaClo	O₃ KC	CI	
	DNT		0.836	5 0.64	53 0.61	05 0.37	78 0.00	18 0.36	41 0.65	08 0.00	18 0.207	9 0.00)18	
	ΤΝΤ	0.8928		0.675	52 0.64	88 0.40	0.00	12 0.38	49 0.63	00 0.00	12 0.207	2 0.00)12	
sp	RDX	0.8441	0.849	3	0.66	83 0.47	73 0.00	12 0.47	40 0.68	48 0.001	12 0.175	59 0.00)12	
unoduu	PETN	0.7956	0.859	5 0.87 ⁻	19	0.63	370 0.00	30 0.61	89 0.65	02 0.003	30 0.113	36 0.00)30	
anic co	nylon	0.6428	0.718	0 0.687	75 0.78	36	0.00	12 0.87	67 0.46	94 0.001	12 0.063	30 0.00)12	
org	wood	0.8216	0.736	1 0.775	56 0.742	20 0.58	329	0.00	18 0.00	12 1.000	0.001	2 1.00	000	
	riblene	0.6650	0.727	6 0.732	29 0.81	32 0.93	.60	42	0.45	26 0.001	18 0.051	5 0.00)18	
	anth	0.8446	0.806	6 0.849	0.84	80 0.75	538 0.80	93 0.79	85	0.001	12 0.168	30 0.00)12	
spu	NaCl	0.5620	0.521	5 0.512	27 0.46	80 0.34	00 0.64	09 0.34	43 0.48	58	0.001	2 1.00	000	
nodwos	NaClO₃	0.5669	0.530	1 0.52	56 0.46	59 0.33	329 0.65	01 0.33	59 0.49	28 0.929	91	0.00)12	
rganic (KCI	0.8108	0.792	1 0.814	19 0.78	20 0.64	23 0.80	81 0.67	28 0.83	30 0.58 ⁻	15 0.584	13		
oul	KClO₃	0.8046	0.786	4 0.818	37 0.79	13 0.66	60 0.81	21 0.69	68 0.84	86 0.552	27 0.582	26 0.96	638	
				Organic co	mpounds					Inorganic co	ompounds			
		TNT	RDX	Organic co PETN	mpounds nylon	wood	riblene	anth	NaCl	Inorganic co NaClO₃	ompounds KCl	KCIO ₃		
Ľ	NT 0.	FNT 6906 0	RDX .7511	Organic co PETN 0.6786	mpounds nylon 0.2895	wood 0.7579	<i>riblene</i> 0.3336	<i>anth</i> 0.6874	NaCl 0.4607	Inorganic co NaClO ₃ 0.3835	0.6353	КСЮ 3 0.6353		
	TNT 0.	TNT 6906 0 TNT 0	RDX .7511 .7134	Organic cc PETN 0.6786 0.8033	mpounds nylon 0.2895 0.4450	wood 0.7579 0.6132	<i>riblene</i> 0.3336 0.5091	<i>anth</i> 0.6874 0.6759	NaCl 0.4607 0.3648	<i>Inorganic cc</i> <i>NaClO</i> ₃ 0.3835 0.3077	0.63776	KCIO ₃ 0.6353 0.6634		
	NT 0.	FNT 6906 0 FNT 0	RDX .7511 .7134 RDX	Organic cc PETN 0.6786 0.8033 0.7716	mpounds nylon 0.2895 0.4450 0.3919	wood 0.7579 0.6132 0.7333	<i>riblene</i> 0.3336 0.5091 0.4350	anth 0.6874 0.6759 0.7256	NaCl 0.4607 0.3648 0.4085	Inorganic cc NaCIO ₃ 0.3835 0.3077 0.3309	ompounds KCI 0.6353 0.6776 0.6576	KCIO₃ 0.6353 0.6634 0.6598		
	NT O.	TNT 0	RDX .7511 .7134 RDX	Organic cc PETN 0.6786 0.8033 0.7716 PETN	mpounds nylon 0.2895 0.4450 0.3919 0.4908	wood 0.7579 0.6132 0.7333 0.7207	<i>riblene</i> 0.3336 0.5091 0.4350 0.5676	anth 0.6874 0.6759 0.7256 0.7818	NaCl 0.4607 0.3648 0.4085 0.3267	Inorganic co NaCIO3 0.3835 0.3077 0.3309 0.2533	ompounds KCI 0.6353 0.6776 0.6576 0.7364	KCIO₃ 0.6353 0.6634 0.6598 0.7360		
	NT 0.	TNT 0	RDX .7511 .7134 RDX	Organic cc PETN 0.6786 0.8033 0.7716 PETN	mpounds nylon 0.2895 0.4450 0.3919 0.4908 nylon	wood 0.7579 0.6132 0.7333 0.7207 0.3943	<i>riblene</i> 0.3336 0.5091 0.4350 0.5676 0.8341	anth 0.6874 0.6759 0.7256 0.7818 0.5187	NaCl 0.4607 0.3648 0.4085 0.3267 0.1344	Inorganic co NaClO3 0.3835 0.3077 0.3309 0.2533 0.0930	ompounds KCI 0.6353 0.6776 0.6576 0.7364 0.4779	KCIO3 0.6353 0.6634 0.6598 0.7360 0.4817		
	NT O.I	TNT 0	RDX .7511 .7134 RDX	Organic cc PETN 0.6786 0.8033 0.7716 PETN	mpounds nylon 0.2895 0.4450 0.3919 0.4908 nylon	wood 0.7579 0.6132 0.7333 0.7207 0.3943 wood	<i>riblene</i> 0.3336 0.5091 0.4350 0.5676 0.8341 0.4468	anth 0.6874 0.6759 0.7256 0.7818 0.5187 0.7836	NaCl 0.4607 0.3648 0.4085 0.3267 0.1344 0.3932	Inorganic co NaClO3 0.3835 0.3077 0.3309 0.2533 0.0930 0.3177	ompounds KCI 0.6353 0.6776 0.6576 0.7364 0.4779 0.6967	KCIO3 0.6353 0.6634 0.6598 0.7360 0.4817 0.7106		
	NT O.	TNT 6906 0 TNT 0	RDX .7511 .7134 RDX	Organic cc PETN 0.6786 0.8033 0.7716 PETN	mpounds nylon 0.2895 0.4450 0.3919 0.4908 nylon	wood 0.7579 0.6132 0.7333 0.7207 0.3943 wood	<i>riblene</i> 0.3336 0.5091 0.4350 0.5676 0.8341 0.4468 <i>riblene</i>	anth 0.6874 0.6759 0.7256 0.7818 0.5187 0.7836 0.5900	NaCl 0.4607 0.3648 0.4085 0.3267 0.1344 0.3932 0.1612	Inorganic co NaCIO3 0.3835 0.3077 0.3309 0.2533 0.0930 0.3177 0.1139	ompounds KCI 0.6353 0.6776 0.6576 0.7364 0.4779 0.6967 0.5503	KCIO3 0.6353 0.66344 0.65988 0.73600 0.48177 0.71066 0.54997		
	NT O.	TNT 6906 0 TNT 0	RDX .7511 .7134 RDX	Organic cc PETN 0.6786 0.8033 0.7716 PETN	mpounds nylon 0.2895 0.4450 0.3919 0.4908 nylon	wood 0.7579 0.6132 0.7333 0.7207 0.3943 wood	<i>riblene</i> 0.3336 0.5091 0.4350 0.5676 0.8341 0.4468 <i>riblene</i>	anth 0.6874 0.6759 0.7256 0.7818 0.5187 0.7836 0.5900 anth	NaCl 0.4607 0.3648 0.4085 0.3267 0.1344 0.3932 0.1612 0.3006	Inorganic co NaCIO3 0.3835 0.3077 0.3309 0.2533 0.0930 0.3177 0.1139 0.2267	ompounds KCI 0.6353 0.6776 0.6576 0.7364 0.4779 0.6967 0.5503 0.7582	KCIO₃ 0.6353 0.6634 0.6598 0.7360 0.4817 0.7106 0.5497 0.7614		
	NT O.	TNT 0	RDX .7511 .7134 RDX	Organic cc PETN 0.6786 0.8033 0.7716 PETN	mpounds nylon 0.2895 0.4450 0.3919 0.4908 nylon	wood 0.7579 0.6132 0.7333 0.7207 0.3943 wood	<i>riblene</i> 0.3336 0.5091 0.4350 0.5676 0.8341 0.4468 <i>riblene</i>	anth 0.6874 0.6759 0.7256 0.7818 0.5187 0.7836 0.5900 anth	NaCl 0.4607 0.3648 0.4085 0.3267 0.1344 0.3932 0.1612 0.3006 NaCl	Inorganic co NaClO3 0.3835 0.3077 0.3309 0.2533 0.0930 0.3177 0.1139 0.2267 0.8747	ompounds KCI 0.6353 0.6776 0.6576 0.7364 0.4779 0.6967 0.5503 0.7582 0.3437	KCIO3 0.6353 0.6634 0.6598 0.7360 0.4817 0.5497 0.5497 0.7614 0.3408		
	NT 0.	TNT 0	RDX .7511 .7134 RDX	Organic co PETN 0.6786 0.8033 0.7716 PETN	mpounds nylon 0.2895 0.4450 0.3919 0.4908 nylon	wood 0.7579 0.6132 0.7333 0.7207 0.3943 wood	<i>riblene</i> 0.3336 0.5091 0.4350 0.5676 0.8341 0.4468 <i>riblene</i>	anth 0.6874 0.6759 0.7256 0.7818 0.5187 0.7836 0.5900 anth	NaCl 0.4607 0.3648 0.4085 0.3267 0.1344 0.3932 0.1612 0.3006 NaCl	Inorganic co NaClO ₃ 0.3835 0.3077 0.3309 0.2533 0.0930 0.3177 0.1139 0.2267 0.8747 NaClO ₃	ompounds KCI 0.6353 0.6776 0.6576 0.7364 0.4779 0.6967 0.5503 0.7582 0.3437 0.2728	KCIO3 0.6353 0.6634 0.6598 0.7360 0.4817 0.5497 0.7614 0.3408 0.2671		
	NT 0.	TNT 0	RDX .7511 .7134 RDX	Organic co PETN 0.6786 0.8033 0.7716 PETN	mpounds nylon 0.2895 0.4450 0.3919 0.4908 nylon	wood 0.7579 0.6132 0.7333 0.7207 0.3943 wood	<i>riblene</i> 0.3336 0.5091 0.4350 0.5676 0.8341 0.4468 <i>riblene</i>	anth 0.6874 0.6759 0.7256 0.7818 0.5187 0.7836 0.5900 anth	NaCl 0.4607 0.3648 0.4085 0.3267 0.1344 0.3932 0.1612 0.3006 NaCl	Inorganic co NaClO ₃ 0.3835 0.3077 0.3309 0.2533 0.0930 0.3177 0.1139 0.2267 0.8747 NaClO ₃	mpounds KCI 0.6353 0.6776 0.6576 0.7364 0.4779 0.6967 0.5503 0.7582 0.3437 0.2728 KCI	KCIO3 0.6353 0.6634 0.7360 0.4817 0.7106 0.7407 0.5497 0.7614 0.3408 0.2671 0.9819		

^a Light-gray cells contain index of quality for 2D images created from the outer product; non-colored cells list the index of quality for outer sum based 2D images and light-blue cells include index of quality for the previous 2D estimators.¹⁰

3.5. Building and using the identity library

As a final issue, in order to progress the selectivity towards specificity, the combined use of the three bidimensional attributes of each compound (the beforehand [16] and the new ones developed) has been considered for its identifying. The purpose is to build a stock of identities from the assembling of 2D images, thereby allowing that the interrogated target meets its match. Each compound will have a unique identifier, called "quick identification code" (QI-code), which will specify the compound completely. In other words, no two compounds may have the same QI-code. Drawing on the identical size of all the 2D estimators concerned, their most straightforward combination has been performed. An

Hazardous

RDX

Harmless

riblene

assembling by concatenation of the images has been considered for generating the *QI-code* of each compound. In doing so, different *QI-codes* were constructed, namely three fused arrays (3330×1665 variables) from the paired combination of the 2D images, and one fused array (4995×1665 variables) when all the 2D attributes are assembled together. Thus, a total of 4 possible storage libraries composed by their particular group of *QI-codes* were built.

The results from libraries' performance evaluation (*data not shown*) contributed to decide the most efficient combination to create the *Ql-codes* for the final library: the assembling of the 2D image from the outer product and that from the previous fusion approach [16]. The assembling of images in *landscape* direction proved equivalent to the merging in *portrait* manner.

PETN

anthracene

Fig. 4. Examples of the QI-codes of some hazardous–DNT, TNT, RDX, PETN–(top) and harmless–nylon, wood, riblene and anthracene–(bottom) organics.

Results on search identification of different organics on the basis of the similarity rate (expressed as a correlation coefficient) when the library built with *Ql-codes* is implemented to assign the identity.

	DNT	TNT	RDX	PETN	nylon	wood	riblene	anthracene
DNT	×	0.5581 (3)	0.4038 (6)	0.2369 (7)	0.5093 (5)	0.5713 (2)	0.5404 (4)	0.6323 (1)
TNT	0.5581 (1)	×	0.2582 (5)	0.2778 (4)	0.5024 (2)	0.2369 (6)	0.3061 (3)	0.2179 (7)
RDX	0.4038 (3)	0.2582 (7)	×	0.3908 (5)	0.3324 (6)	0.4874 (1)	0.3912 (4)	0.4212 (2)
PETN	0.2369 (7)	0.2778 (6)	0.3908 (2)	×	0.3761 (3)	0.5317 (1)	0.3709 (4)	0.3365 (5)
nylon	0.5093 (4)	0.5024 (5)	0.3324 (7)	0.3761 (6)	×	0.5118 (3)	0.7942 (1)	0.6084 (2)
wood	0.5713 (3)	0.2369 (7)	0.4874 (6)	0.5317 (4)	0.5118 (5)	×	0.6078 (2)	0.7859 (1)
riblene	0.5404 (4)	0.3061 (7)	0.3912 (5)	0.3709 (6)	0.7942 (1)	0.6078 (3)	×	0.6839 (2)
anthracene	0.6323 (3)	0.2179 (7)	0.4212 (5)	0.3365 (6)	0.6084 (4)	0.7859 (1)	0.6839 (2)	×

The numbering in brackets arranges the resemblance, in order of decreasing, between the interrogated target and those stored within the library.

Proof on the effectiveness of the final library to identify each compound is shown in Fig. 4, where the QI-codes for the considered organics are depicted. Each code is composed by something more than 5 and a half million variables. As seen, differences within the identifiers of hazardous compounds and those of harmless materials are detectable even to the naked eve. Beyond such inter-class differences, the approach even goes as far as to perform an intra-class categorization. Table 5 lists the results on the implementation of the library to assign the identity of concerned organics from their QI-codes. Data correspond to the similarity rate (expressed as a correlation coefficient) evaluated from a cross-validation: that is, when left out from the library the object being checked. As seen, the OI-code increases the accuracy on declaring the identity of the interrogated compound. The rates of coincidence between compounds, computed on the basis of this new estimator, decrease as compared to those reached when using any single 2D image as identifier. In no case the frontier of a 0.8 of similarity is exceeded, despite that the identity of the interrogated compound is unavailable in the library. Hence, the most outstanding advantage of this QI-code is the capability not only to predict a potential risk, also the competence in assigning the identity of the threat. The approach presented here demonstrates the synergistic effect of LIBS and Raman spectral data when combined in an advanced sensor fusion strategy.

4. Conclusions

In the present manuscript, the pros and cons offered by the different combinations of Raman and LIBS responses of a target to its identification have been drawn. Despite that some materials can be categorized either from their particular molecular or atomic spectral features, the enhancement revealed by an advanced combination of Raman and LIBS has been disclosed. As demonstrated, when the LIBS response is not sufficient for distinction between organics, the fusion with the Raman counterpart leads to substantive improvement in the differentiation ability. Similarly, when Raman spectroscopy cannot report exclusive information on the identity of compounds, progress in categorization from the input of LIBS data is beyond any doubt. In this context, the assembling of the spectral information into bidimensional estimators emphasizes more the differences between compounds as compared to their corresponding mono-dimensional attributes. Furthermore, it has been proved that by using a specific code integrated by two 2D estimators, the declaration on the identity of the interrogated target offers an absolute reliability.

The inspected targets are easily identified from the matching of their codes with those previously stored in a small library exhibiting correlation rates far below of 0.8. The proposed data fusion strategy fully exploits the orthogonal atomic and molecular spectral information; thereby proving the synergy of the two spectral counterparts. Further investigation on the robustness and ruggedness of the codes in the identification of compounds in presence of possible interferences as well as complex mixtures, are right now under development. Furthermore, testing on the performance of approaches to identify residues left on surfaces of supports is also in progress.

Acknowledgements

This work was supported by Project CTQ11-24433 of the Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación of Spain and from the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía (Project P07-FQM-03308).

References

- [1] L. Hall, J. Llinas, Proc. IEEE 85 (1997) 6-23.
- [2] N. Salim, J. Holliday, P. Willett, J. Chem. Inf. Comput. Sci. 43 (2003) 435-442.
- [3] G.W. Geerling, M. Labrador-Garcia, J.G.P.W. Clevers, A.M.J. Ragas, A.J.M. Smits, Int. J. Remote Sens 28 (2007) 4263–4284.
- [4] J. Forshed, H. Idborg, S.P. Jacobsson, Chemom. Intell. Lab. Syst 85 (2007) 102–109.
- [5] A. Smolinska, L. Blanchet, L. Coulier, K.A.M. Ampt, T. Luider, R.Q. Hintzen, S.S. Wijmenga, L.M.C. Buydens, PLoS One 7 (2012) e38163.
- [6] C.V. Di Anibal, M.P. Callao, I. Ruisánchez, Talanta 84 (2011) 829-833.
- [7] Y.B. Monakhova, R. Godelmann, A. Hermann, T. Kuballa, C. Cannet, H. Schafer, M. Spraul, D.N. Rutledge, Anal. Chim. Acta 833 (2014) 29–39.
- [8] S. Mas, R. Tauler, A. de Juan, J. Chromatogr. A 1218 (2011) 9260–9268.
- [9] F.C. Clarke, M.J. Jamieson, D.A. Clark, S.V. Hammond, R.D. Jee, A.C. Moffat, Anal. Chem. 73 (2001) 2213–2220.
- [10] P.M. Ramos, I. Ruisánchez, K.S. Andrikopoulos, Talanta 75 (2008) 926–936.
- [11] T.I. Dearing, W.J. Thompson, C.E. Rechsteiner, B.J. Marquardt, Appl. Spectrosc. 65 (2010) 181–186.
- [12] M. Casale, N. Sinelli, P. Oliveri, V. Di Egidio, S. Lanteri, Talanta 80 (2010) 1832–1837.
- [13] S.J. Tao, J.M. Li, J.H. Li, J.B. Tang, J.R. Mi, L.L. Zhao, IFIP Adv. Inf. Commun. Technol. 369 (2012) 478–483.
- [14] L. Vera, L. Acena, J. Guasch, R. Boque, M. Mestres, O. Busto, Talanta 87 (2011) 136–142.
- [15] H.W. Lee, A. Christie, J. Xu, S. Yoon, Biotechnol. Bioeng. 109 (2012) 2819-2828.
- [16] J. Moros, J.J. Laserna, Anal. Chem. 83 (2011) 6275-6285.
- [17] J.S. Caygill, F. Davis, S.P.J. Higson, Talanta 88 (2012) 14-29.
- [18] F.J. Fortes, J.J. Laserna, Spectrochim. Acta, Part B 65 (2010) 975-990.
- [19] D.S. Moore, R.J. Scharff, Anal. Bioanal. Chem. 393 (2009) 1571-1578.
- [20] J. Moros, F.J. Fortes, J.M. Vadillo, J.J. Laserna, LIBS detection of explosives in traces, in: S. Musazzi, U. Perini (Eds.), Laser-Induced Breakdown Spectroscopy, Springer-Verlag, Berlin, 2014, pp. 349–375.
- [21] J. Moros, J.A. Lorenzo, K. Novotný, J.J. Laserna, J. Raman Spectrosc. 44 (2013) 121–130.
- [22] J. Moros, J.A. Lorenzo, P. Lucena, L.M. Tobaria, J.J. Laserna, Anal. Chem. 82 (2010) 1389–1400.
- [23] J. Moros, J.A. Lorenzo, J.J. Laserna, Anal. Bioanal. Chem. 400 (2011) 3353–3365.
 [24] P.V. Shah, A. Singh, S. Agarwal, S. Sedigh, A. Ford, R. Waterbury, Proc. SPIE 7303
- (2009) 730329.
- [25] Z. Wang, A.C. Bovik, IEEE Signal Proc. Let 9 (2002) 81-84.