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a b s t r a c t

Data fusion is the process of combining data gathered from two or more sensors to produce a more
specific, comprehensive and unified dataset of the inspected target. On this basis, much has been said
about the possible benefits resulting from the use of molecular and atomic information for the detection
of explosives. The orthogonal nature of the spectral and compositional information provided by Raman
spectroscopy and laser-induced breakdown spectroscopy (LIBS) makes them suitable candidates for an
optimal combination of their data, thus achieving inferences that are not feasible using a single sensor.
The present manuscript evaluates several architectures for the combination of spectral outputs from
these two sensors in order to compare the benefits and drawbacks of data fusion for improving the
overall identification performance. From the simple assembling (concatenation or addition) of Raman
and LIBS spectra to signals’ processing on the basis of linear algebra (either the outer product or the
outer sum), different identification patterns of several compounds (explosives, potential confusants and
supports) have been built. The efficiency on target differentiation by using each of the architectures has
been evaluated by comparing the identification yield obtained for all the inspected targets from
correlation and similarity measurements. Additionally, a specific code integrated by several of these
patterns to identify each compound has also been evaluated. This approach permits to obtain a better
knowledge about the identity of an interrogated target, mainly in those decisive cases in which LIBS or
Raman cannot be effective separately to reach a decision.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Data fusion commonly refers to a process of combining synergis-
tically or integrating, in the most effective way, observed data that
gather from two or more sensors to produce a more specific,
comprehensive and unified dataset of an interrogated target [1]. The
benefits of data fusion have been used in a wide range of application
fields. For instance, in the area of chemoinformatics, data fusion
experiments have been made to combine several binary similarity
coefficients to get an overall estimate of similarity for searching
databases of bioactive molecules [2]. In environmental monitoring,
spectral and structural datasets gathered from CASI (compact airborne
spectrographic imager) and LIDAR (light detection and ranging)
sensors, respectively, have been fused on a pixel level to improve
the classification of the floodplain vegetation [3]. Similarly, 1H NMR
(nuclear magnetic resonance) information has been recently com-
bined with mass spectrometry data from liquid [4] and gas [5]
chromatography to generate metabolic profiles from analysis of rat
urine as well as of cerebrospinal fluid of multiple sclerosis individuals,

respectively. Information obtained by 1H NMR has been also com-
bined with UV–visible spectroscopy data [6] and with isotopic figures
[7] to determine banned dyes in culinary spices and to improve the
authenticity of wines, correspondingly.

New data fusion structures from chromatographic and spectro-
scopic data have been also proposed for improving the capability to
identify the photoproducts formed and the accuracy in the description
of the mechanism driving the photodegradation process [8]. The
synergy of Raman and FT-NIR microscopies to enable a more complete
visualization of any solid dosage pharmaceutical form has been
demonstrated [9]. Likewise, in cultural heritage issues, data-fusion
strategies based on the outputs of a Raman/X-ray fluorescence
combined instrument, has been investigated for dealing with the
classification of ochre pigments [10]. Furthermore, complementary
spectra from Raman, IR (infrared) and NMR sources have been
assembled for giving a “fused” dataset to an increased understanding
and control of an industrial process [11]. Also for solving problems
related to food authentication, data collected from near (NIR) and
middle (MIR) infrared spectrometers have been processed both,
separately and jointly, using chemometrics to demonstrate the syner-
gistic effect from fused spectroscopic datasets for dealing with
classification problems [12,13]. In the same vein, data from mass
spectra (MS)-based electronic nose (E-nose), a mid-IR optical-tongue
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and a UV–visible sensor have been assembled to deal with differences
from sensory properties on beer samples of the same brand and
commercialized as a same product, but brewed in four different
factories [14]. Equally, a data fusion strategy of combining multiple
spectroscopic techniques (NIR, Raman, 2D fluorescence and X-ray
fluorescence) has been also investigated for the characterization of soy
hydrolysates in mammalian cell cultures [15]. In the area of homeland
security, an approach for the combination of the spectral outputs of
sensors based on Raman and LIBS (Laser-Induced Breakdown Spectro-
scopy) in order to improve the identification of explosives and related
compounds has been developed [16]. However, despite the improve-
ment on materials distinction from each other by simple linear
correlation when molecular information is merged to atomic data,
the progress of selectivity towards specificity is still being pursued.

Detection of explosives has attracted considerable attention in
recent years [17]. From the standpoint of sensor fusion, the most
appealing tools to tackling this scenario have proved to be LIBS
[18] and Raman spectroscopy [19]. Together with their versatility
to operate under a standoff scheme, both sensing modes offer
complete information on the constitution of the sample, that is,
elemental composition from the emission spectra and molecular
information extracted from scattered radiation. Commonly, to deal
with such challenge both techniques are used separately. At these
circumstances, that is, when findings are judged on the basis of
particular spectral information, the decision about target’s identity
might be limited. For instance, LIBS has a restricted ability on
identify those inspected targets that share elemental composition,
as organics [20]. Similarly, although interaction between excitation
light and the target might lead to a unique spectral fingerprinting
of the material, selectivity of Raman suffers when the same
functional group is involved in the composition of the interrogated
targets [21]. Clearly, these particular scenarios entail a deficit for
each spectroscopic technique, notably when trying to differentiate
between explosive and harmless materials.

Assembling and integration of such techniques into a mobile
sensor platform using the same laser pulses and gated multi-
channel detectors to improve identification confidence has been
demonstrated [22]. Despite that this fitting of the two sensors
allows to simultaneously gather both spectral data coming from
the same laser events, the manner in how such information may
be manipulated and also associated has still a lot of grounds for
concern. The reason is due to some technical incompatibilities,
especially when it comes to residue analysis [23]. Indeed, to date,
only a few attempts on fusion of these data, although acquired
from a sequential interrogation of bulk targets, have been recently
published [16,24].

In order to progress, in the present manuscript, several novel
architectures on assembling data from Raman and LIBS sensors are
described. The strengths and the weaknesses of several estimators
built to provide a precise identification of pure materials have
been evaluated through correlation and dissimilarity measure-
ments. Results on the implementation of such assets in order to
enhance the differentiation and recognition of inspected targets
have been discussed. Findings have revealed that the combination
of different bidimensional assembling frameworks fused into a
unique estimator may provide a reliable attribute to confidently
label the identity of each interrogated target.

2. Experimental

2.1. Sensor set-up

The versatile Raman and LIBS configurable set-up for standoff
analysis consisted of twins Q-switched Nd:YAG lasers (10 Hz,
532 nm, 400 mJ pulse�1, 5.5 ns pulse width) that were utilized

as irradiative sources. A beam expander (10� large output) was
employed for first expanding and then focusing the laser beam on
the target. Scattered and emitted light from the target was
gathered through a home-made Cassegrain telescope (167 cm in
length and 24 cm in diameter), which permits converging light on
the tip of an optical fiber 600 mm in diameter mounted on a
precision linear stage. After collection, light was guided to the
entrance port of the proper detection system.

For Raman data collection, a holographic imaging spectrograph
(85 mm focal length, f/1.8i, 25 mm slit) equipped with a volume
phase holographic (VPH) grating (model HSG-532-LF) and fitted
with an iCCD detector (intensifier tube diameter of 18 mm) was
used. For LIBS signal detection, a Czerny–Turner spectrograph
(303 mm focal length, f/4, 10 mm slit) fitted with a 150 lines per
mm diffraction grating blazed at 500 nm and an iCCD detector
(intensifier tube diameter of 25 mm) was employed.

Raman and LIBS measurements were sequentially obtained for
each target after focusing a number of laser pulses of 440 mJ each
on sections of ca. 1.00 cm2 and 0.02 cm2, thus achieving irradiance
values of 0.11 GW cm�2 and 4.73 GW cm�2, respectively. For
Raman data collection, the delay time was set to zero ns, whereas
the gate width was set to 800 ns. For LIBS data acquisition, a delay
time of 900 ns and an integration time of 9 ms were established as
timing parameters. Experiments were all carried out at standoff
distances of 20 m inside a 50 m long partially closed corridor. Data
obtained from Andor were exported in text format and analyzed
using Matlabs (The Mathworks Inc., South Natick, MA, USA). In
any case, readers requiring more details are requested to check the
reference [23].

2.2. Samples

In order to evaluate the strength and weaknesses on the
implementation on data fusion from different strategies, Raman
and LIBS representative spectra from pure explosive materials,
including 2,6-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT),
cyclotrimethylenetrinitramine (RDX), pentaerythritoltetranitrate
(PETN) as well as some explosive related compounds (ERCs) such
as sodium chlorate (NaClO3) and potassium chlorate (KClO3), were
registered. In parallel, several non-energetic materials, but subject
to confusion with the previous ones from their LIBS responses,
such as nylon, wood, riblene (low density polyethylene), anthra-
cene (anth), sodium chloride (NaCl) and potassium chloride (KCl)
were also considered.

Samples were primed and arranged for the analysis in their most
appropriate bulk form. Thus, DNT, NaClO3, KClO3, anth, NaCl and KCl
were used as cylindrical pellets of ca. 200 mm2 in area and 6 mm in
thickness. In addition, RDX base paste explosive was prepared as a
sticky mass on the surface of a glass microscope slide (76 mm� -
26 mm), at all times, helping to safeguard dimensions (thickness and
area) similar to those achieved for the previously cited pellets. Similar
case held true for TNT, from its melted solid form. Finally, PETN,
extracted as a ring from a booster, as well as Nylon, wood and Riblene,
all them as plates (40 mm�40mm�4mm), were analyzed in their
raw state. In this way, all the targets were tested as bulk materials.

2.3. Raman-LIBS data fusion approaches

The fusion process at the feature level of spectral responses
from sensor measurements consists in the generation of a new
attribute, that is, a new identity which aims to more clearly
identify the interrogated target. To this end, a global descriptor
of the compound is generated by fusing the molecular and atomic
outputs of a compound when interrogated by Raman and LIBS
sensors.
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In this particular case, although spectral information gathered by
our dual sensor, comes from different regions of the sample and the
Raman and LIBS responses arise from different laser events, complete
spectroscopic information faithfully represents the target under inter-
rogation. To construct the new attributes of each compound, represen-
tative Raman and LIBS spectra were used.

For this purpose, first, scattered light resulting from 25 sequential
laser pulses on the target surface was accumulated for building up the
final Raman response. There was no evidence that the use of these
successive laser pulses produced any photo and/or thermal surface
degradation. Meanwhile, the emitted light from additional 25 laser-
induced plasmas was averaged to yield the LIBS counterpart.

Due to the different dynamic ranges of the Raman and LIBS
responses, normalization by scaling between 0 and 1 was con-
sidered. It was further verified that performance of the parameters
indicating the degree of similarity is preserved, no matter how the
normalization approach proceeds. However, such type of scaling
not only ensures the distinction between new identifiers on the
basis of the different frequencies and wavelengths of the spectral
features but also provides an equally input of the molecular and
atomic information for the final attribute, whatever the assem-
bling mode used. Without this last, comparison of the new
identifiers would be equivalent to compare information from a
single sensor, that is, the dataset involving a largest weight in the
attribute. A more detailed description on the min-max scaling
method may be found in a previous Ref. [16].

For convenience of the reader, the present section has been
divided according the vector or matrix nature of the new attribute
generated. As starting information for the 4 approaches developed
it has taken the intensity values belonging to the Raman (r) and
LIBS (l) spectra at each relevant pixel (n¼1, 2, 3,…,1665) and
arranged into two separate identical-size vectors, named R
(Raman) and L (LIBS), respectively.

� New attributes as a first-order vectors
– Vectors concatenation

There are a number of different techniques for synthesizing
a fused attribute. The technique used as first instance,
concatenative synthesis, relies on concatenation of the
Raman and LIBS spectra from each compound to construct
its new identifier. The final attribute is constructed from an
augmented vector built by correlatively allocating the LIBS
data (spanning the spectral range from 320 nm up to
780 nm) together with the Raman counterpart (containing
frequencies between 400 cm�1 and 1800 cm�1). Thus, the
new identifier consists of a vector of 3330 variables.

r1 r2 r3 r4 r5 … rn
h i

l1 l2 l3 l4 l5 … ln
h i

¼ r1 r2 r3 r4 r5 … rn l1 l2 l3 l4 l5 … ln
� �

– Vectors coaddition
Another straightforward process, like the concatenative
synthesis, is the coaddition technique. This time, taking
advantage on the availability of a same number of
variables for both spectra, the sum, pixel to pixel, of
Raman and LIBS responses is considered for generating a
composite attribute to each compound. Through this
procedure, the new attribute preserves their vector form
and the number of variables (1665), but changes its
shape according to the Raman and LIBS information.
Despite that this new attribute is also built from the
complete molecular and atomic spectral information, it

should be pointed out that it has no longer meaning in
terms of spectroscopy.

r1 r2 r3 r4 r5 … rn
h i
þ l1 l2 l3 l4 l5 … ln
h i
¼ r1þ l1 r2þ l2 r3þ l3 r4þ l4 r5þ l5…rnþ ln
� �

� New attributes as a second-order vectors
– Vectors outer sum

The tensorial sum of two vectors is a way of creating a new
space on the basis of sum of integers. As shown below, data
produce a fused square array (1665�1665) when asso-
ciated by summing each pixel of the transposed L vector to
every pixel of the R vector.

r1
r2
r3
r4
r5
…
rn

2
666666666664

3
777777777775
� l1 l2 l3 l4 l5 … ln

� �

¼

r1þ l1 r2þ l1 r3þ l1 r4þ l1 r5þ l1 … rnþ l1
r1þ l2 r2þ l2 r3þ l2 r4þ l2 r5þ l2 … rnþ l2
r1þ l3 r2þ l3 r3þ l3 r4þ l3 r5þ l3 … rnþ l3
r1þ l4 r2þ l4 r3þ l4 r4þ l4 r5þ l4 … rnþ l4
r1þ l5 r2þ l5 r3þ l5 r4þ l5 r5þ l5 … rnþ l5
… … … … … … …

r1þ ln r2þ ln r3þ ln r4þ ln r5þ ln … rnþ ln

2
666666666664

3
777777777775

– Vectors outer product
Similarly to the previous approach, the tensorial product
(also named outer product) of two vectors allows to create
a new space equivalent to multiplication of integers. On this
occasion, the new attribute is, again, a 1665-by-1665 block
matrix formed from all possible products between the
elements of R and those of L.

r1
r2
r3
r4
r5
…
rn

2
666666666664

3
777777777775
� l1 l2 l3 l4 l5 … ln

� �

¼

r1l1 r2l1 r3l1 r4l1 r5l1 … rnl1
r1l2 r2l2 r3l2 r4l2 r5l2 … rnl2
r1l3 r2l3 r3l3 r4l3 r5l3 … rnl3
r1l4 r2l4 r3l4 r4l4 r5l4 … rnl4
r1l5 r2l5 r3l5 r4l5 r5l5 … rnl5
… … … … … … …
r1ln r2ln r3ln r4ln r5ln … rnln

2
666666666664

3
777777777775

By plotting any of new attributes before mentioned, a final
distinct pattern, for a precise identification of each compound, is
reached. Again, these new discrete projections have no meaning in
terms of spectroscopy. On the whole, these different attributes just
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Table 1
Values for the correlation coefficient (r) and the root mean square error (RMSE) estimated between assayed compounds from their normalized LIBS (top) and Raman
(bottom) responsesa.

a Light-gray cells contain RMSE values whereas non colored cells list r values. NaN (no available number) reflects the impossibility for computing the parameter when the
signal is a vector completely composed by zeros.
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represent distinct guides which can be used, separately or
together, to identify an unknown target.

2.4. Data analysis

The goal of any data fusion approach aimed to enhance the identity
of a target is the building of a new attribute, from its sensor responses,
that completely differs from the attribute generated for any other
target. Assessment of the new attribute quality was carried out by
using the correlation coefficient value (denoted by r). Thus, supposing
that A and B are two finite-size attributes (either vectors or matrices), r
is computed from Eq. (1) as follows:

r ¼ ΣmΣnðAmn�AÞðBmn�BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣmΣnðAmn�AÞ2Þ ΣmΣnðBmn�BÞ2Þ

��r ð1Þ

where A and B are the mean values of the elements composing A and
B, respectively. As a result, the closer is the value of r to 1, the higher
the similarity between the attributes under consideration and, conse-
quently, more problematic is their identification. However, as r
depends only on the shapes of new attributes, not on their magni-
tudes, an additional measure of the extent to which a pair of attributes
is similarly related was also computed through the root mean square
error (RMSE), which has been a dominant quantitative performance
metric in the field of signal processing. The aim of this measure is to
compare two attributes by providing a quantitative score that
describes the degree of similarity or, conversely, the level of
error between them. RMSE between two attributes is calculated

from Eq. (2):

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NM
∑
n;m

fAðn;mÞ�Bðm;nÞg2
s

ð2Þ

where NM is the total number of variables in each attribute. In this
case, the lower the RMSE value the greater the similarity between the
attributes from compounds being compared. Consequently, the sys-
tem bears a substantial difficulty in distinguishing them.

These parameters are highly useful for assessing the level of
identity for an unknown target via the matching of its attribute
and concrete attributes for compounds of interest constructed in
advance and included in a short library.

3. Results and discussion

3.1. Differentiating compounds from single technique responses

As discussed elsewhere [23], both Raman and LIBS sometimes
may fail on providing a genuine spectral fingerprint to unequi-
vocally identify a compound. In order to tinge this pronounce-
ment, both the LIBS and Raman spectra of a number of explosives
and related compounds have been compared using their correla-
tion coefficients and root mean square errors. Table 1 summarizes
the corresponding values. As seen, for different pairs of com-
pounds, the exclusive use of information from the LIBS sensor
prevents a reliable categorization of a compound as an explosive
or a harmless material. According to the standoff spectral response
uncertainty, a correlation coefficient of 0.8 was considered a
limiting value for discrimination purposes. Decisions on disparity

Fig. 1. Paired comparison of the resulting attributes from the concatenation of the Raman and LIBS normalized information for (A) DNT and nylon and (B) NaClO3 and KClO3.
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between compounds whose r values are larger than this threshold
might be imprecise. For instance, differentiation between DNT and
nylon (0.9612), riblene (0.9034) and anth (0.8718), is unconfident
on the sole basis of their LIBS spectra. In a similar fashion, RMSE
values keep consistently low for the pairs considered; �0.0536,
0.0875, and 0.1313, respectively. Similarly, decisions based on
Raman spectra may also be compromised as seen for DNT and
TNT or the chlorates examined with respective r values of 0.8144
and 0.8770. To cope with these difficulties, an investigation on
new approaches for creating new identification patterns by fusing
Raman and LIBS information has been tackled.

3.2. Differentiating compounds using first-order attributes

The easiest way to proceed in data fusion is the concatenation
of the spectral information, that is, a correlative allocation of the
LIBS outcome together with its Raman counterpart. Fig. 1 depicts
an example of the new estimators generated by concatenation for
two pairs of interest. The left side represents the Raman contribu-
tion to the estimator, whereas the right part accounts for the LIBS
involvement. As shown, for the couple DNT–nylon, the LIBS input
retains the envisaged similarity between the compounds, whereas
the Raman participation acts as the crucial component that may
contribute to a successful differentiation between them. In other
instances it is the LIBS data set the key factor to discern the
compounds as is the case of the pair NaClO3–KClO3.

By stacking the paired outcomes at variable level, coaddition of
data produces a simple and common output, which acts later as
the input for the final decision. Fig. 2 displays the attributes for the
case of DNT and NaCl. Differently from the concatenation frame-
work, coadding the data leads to a new identity lacking of direct
spectral interpretation. As seen, the molecular and the atomic
information intermingle with each other within a new and
intricate attribute built for DNT. In contrast, a compound of
missing Raman response produces an attribute identical to the
LIBS spectrum. This is the case of NaCl shown in the figure.

The effectiveness of all these new attributes for differentiation
between compounds is evaluated from the results listed in Table 2.
The correlation coefficients together with RMSE values for the new
estimators are summarized. As reflected, both approaches successfully
solve conflicting situations related to organic compounds. For
instance, when the performance of the new estimators is compared
with the sole use of LIBS information, the r values for the pairs DNT–
nylon, DNT–riblene and DNT–anth, stand close to 0.6. Simultaneously,
their RMSE values scale beyond 0.1 on a proportional basis in
accordance with the decreasing values of r. Raman information
produces significant synergistic effects for differentiation.

However, conflicts concerning the differentiation between
chloride and chlorate from the same cation remain with r values
close to 0.9 and RMSE results below 0.1. In this particular case, the
new attributes offer only a modest improvement as compared to
the simple LIBS information. In other words, the merging of Raman
information brings no significant advance in the distinction
between such compounds. Hence, this implies the need of alter-
native approaches for assembling the spectral information to cope
with such unfavorable cases.

3.3. Differentiating compounds using second-order attributes

Once evaluated the performance of first-order attributes, fusion
approaches were focused on the generation of second-order char-
acteristic estimators for each compound. By building 2D images from
these final patterns, new identities for each compound are achieved.
Fig. 3 depicts the 2D images generated for DNT and NaCl, respectively,
from the outer sum (top) and the outer product (bottom) of their
particular Raman and LIBS responses. Since these operations are

performed on vectors of identical size, the final outcome leads to a
square matrix of ca. 2.8 million variables in both instances. As shown,
in the case of the outer sum, fusion of paired spectral variables yields a
complex additive contribution to each point of the image, thereby
highlighting the complete molecular and atomic information. In
contrast, when fusion is based on the product of variables, any lack
of spectral features within one of the counterparts cancels the
information of the other. That is the reason why, in the case of DNT,
only the concurring atomic and molecular signals account for the
emphasized features within the final 2D image. On the contrary, for
NaCl, the absence of Raman response leads to a final image consisting
solely of zeros, the attribute in this case still being fully descriptive.

The significance of these 2D images on compound differentiation
may be assessed from the results reported in Table 3. The similarity
between the corresponding 2D images was evaluated by means of
values of r and RMSE. As observed, the sum-based identifiers
perform similarly to the corresponding first order attributes (see
Table 2). For instance, correspondence between DNT and nylon,
riblene and anth, fits to r values of 0.6727 (0.5088 and 0.6404),
0.6342 (0.5472 and 0.6119) and 0.6628 (0.6265 and 0.6795), respec-
tively. This evidence is also supported by parallel RMSE values.
Something similar holds true for the chloride–chlorate pairs for

Fig. 2. Examples of the resulting attributes from the coaddition of the Raman and
LIBS normalized information for (A) DNT and (B) NaCl.
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Table 2
Values for the correlation coefficient (r) and the root mean square error (RMSE) estimated between assayed compounds from first-order attributes generated by
concatenation (top) and coaddition (bottom) of their Raman and LIBS responsesa.

a Light-gray cells contain RMSE values whereas non colored cells list the r values.
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which such assembling still fails to satisfactorily solve their sorting,
as revealed by r values larger than 0.8.

A different instance occurs with the product-based images.
While these new identities seem limited in their identificative
abilities, their manifested specificities are much larger than those
of sum 2D images. Proof of this can be found in the markedly
shrink of the r values for the pairs DNT–riblene and DNT–anth,
0.4703 and 0.2271, respectively. Likewise, in the cases of the pairs
NaClO3–NaCl and KClO3–KCl, the lack of Raman response for
chlorides results in a positive synergy in the final 2D estimator
for their subsequent differentiation from their respective chlo-
rates. Due to the infinitesimal impact of quadratic residuals,
dissimilarity rates (RMSE) between these product-based 2D images
are one order of magnitude lower than those of the other
attributes. Though this circumstance could suggest a larger simi-
larity between the identities being compared, the correlation
values demonstrate that such a fusion process generates new
attributes, which lead to a correct distinction between those
compounds. A significant limitation of the product-based
approach arises for compounds lacking of a Raman response.
Under these circumstances, the final outcome of the assembling
procedure is a zero (null) matrix, thereby voiding any benefit
provided by their LIBS information; for instance, NaCl is identical
to KCl, in spite of the large difference in their atomic composition.
Notwithstanding this, second order data assembling is more
favorable to solve the most conflicting cases, that is, between
explosives and confusants.

3.4. Peer-to-peer assessment of image quality

Having assessed the differentiation capabilities of these new 2D
images, their quality for identification purposes was contrasted
with 2D attributes built beforehand [16]. To that end, the universal
image index of quality (IOQ) proposed by Wang and Bovik was
used [25]. With a value range of [�1, 1], such index denotes the

matching between two images, the closer the value to 1 the more
similar are the images. The resulting outcomes from this peer
comparison are summarized in Table 4.

Consider the distinction between hazardous (DNT, TNT, RDX and
PETN) and harmless (nylon, wood, riblene and anth) organics. When
using 2D images based on the outer sum, no identity differences
between the explosives and anthracene are noticed (IOQ outcome
above the limiting value of 0.8 needed for discrimination). Similar
holds true for other pairs like DNT–wood and PETN–riblene. In
contrast, hazardous organics are discernible when using any of the
other two 2D estimators; in particular the task is much easier when
using the attribute based on the outer product (values of IOQ always
below 0.7). Furthermore, image quality indices for these last 2D
attributes indicate that distinction between organics, whatever their
nature, can be achieved. Such a circumstance enables to progress from
a discrete classification according to the hazardous nature towards an
accurate identity assignment. This property is highly beneficial in the
fight against the threats.

In the case of inorganic salts, any of the 2D attributes is valid to
identify sodium chlorate and potassium chlorate, thereby allowing the
categorization of a manufactured explosive. As listed in Table 4, even
the largest IOQ value of 0.5826 significantly departs from the 0.8 limit-
ing value established for discrimination purposes. However, only the
2D estimator built through the outer product-based approach allows
differentiating between cationically-related chlorates and chlorides
(IOQ values close to 0).

Summarizing, while the outer-product 2D image elucidates the
vast majority of targets, the efficient performance of the other 2D
estimators invites to consider the fusion of such attributes as a
possible way forward to achieve further synergies. In other words,
intermesh the 2D images looking for creating of an almost
exclusive identifying pattern for each target. The final purpose is
to build a library of identity patterns, thereby enabling to collate,
through linear correlation, the unknown interrogated target
against those stored.

Sodium chloride (NaCl)Dinitrotoluene (DNT)

Fig. 3. Examples of the second order estimators resulting either from the outer sum (top) and the outer product (bottom) of the particular Raman and LIBS responses for DNT
(on the left) and NaCl (on the right).
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Table 3
Values for the correlation coefficient (r) and the root mean square error (RMSE) estimated between 2D images (used as characteristic fingerprint) of assayed compounds and
generated from the outer sum (top) and from the outer product (bottom) of their corresponding normalized Raman and LIBS responsesa.

a Light-gray cells contain RMSE values whereas non colored cells list r values. NaN (no available number) reflects the impossibility for computing the parameter when the
signal is a matrix completely composed by zeros.
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Table 4
Comparison of the universal image index of quality (IOQ) from the second-order attributes generated for several compoundsa.

a Light-gray cells contain index of quality for 2D images created from the outer product; non-colored cells list the index of quality for outer sum based 2D images and
light-blue cells include index of quality for the previous 2D estimators.10
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3.5. Building and using the identity library

As a final issue, in order to progress the selectivity towards
specificity, the combined use of the three bidimensional attributes
of each compound (the beforehand [16] and the new ones devel-
oped) has been considered for its identifying. The purpose is to
build a stock of identities from the assembling of 2D images,
thereby allowing that the interrogated target meets its match. Each
compound will have a unique identifier, called “quick identification
code” (QI-code), which will specify the compound completely. In
other words, no two compounds may have the same QI-code.
Drawing on the identical size of all the 2D estimators concerned,
their most straightforward combination has been performed. An

assembling by concatenation of the images has been considered for
generating the QI-code of each compound. In doing so, different QI-
codes were constructed, namely three fused arrays (3330�1665
variables) from the paired combination of the 2D images, and one
fused array (4995�1665 variables) when all the 2D attributes are
assembled together. Thus, a total of 4 possible storage libraries
composed by their particular group of QI-codes were built.

The results from libraries’ performance evaluation (data not shown)
contributed to decide the most efficient combination to create the QI-
codes for the final library: the assembling of the 2D image from the
outer product and that from the previous fusion approach [16]. The
assembling of images in landscape direction proved equivalent to the
merging in portrait manner.

TNTDNT

Hazardous

PETNRDX

woodnylon

Harmless

riblene anthracene

Fig. 4. Examples of the QI-codes of some hazardous—DNT, TNT, RDX, PETN—(top) and harmless—nylon, wood, riblene and anthracene—(bottom) organics.
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Table 5
Results on search identification of different organics on the basis of the similarity rate (expressed as a correlation coefficient) when the library built with QI-codes is implemented to assign the identity.

The numbering in brackets arranges the resemblance, in order of decreasing, between the interrogated target and those stored within the library.
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Proof on the effectiveness of the final library to identify each
compound is shown in Fig. 4, where the QI-codes for the con-
sidered organics are depicted. Each code is composed by some-
thing more than 5 and a half million variables. As seen, differences
within the identifiers of hazardous compounds and those of
harmless materials are detectable even to the naked eye. Beyond
such inter-class differences, the approach even goes as far as to
perform an intra-class categorization. Table 5 lists the results on
the implementation of the library to assign the identity of
concerned organics from their QI-codes. Data correspond to the
similarity rate (expressed as a correlation coefficient) evaluated
from a cross-validation; that is, when left out from the library the
object being checked. As seen, the QI-code increases the accuracy
on declaring the identity of the interrogated compound. The rates
of coincidence between compounds, computed on the basis of this
new estimator, decrease as compared to those reached when using
any single 2D image as identifier. In no case the frontier of a 0.8 of
similarity is exceeded, despite that the identity of the interrogated
compound is unavailable in the library. Hence, the most out-
standing advantage of this QI-code is the capability not only to
predict a potential risk, also the competence in assigning the
identity of the threat. The approach presented here demonstrates
the synergistic effect of LIBS and Raman spectral data when
combined in an advanced sensor fusion strategy.

4. Conclusions

In the present manuscript, the pros and cons offered by the
different combinations of Raman and LIBS responses of a target to
its identification have been drawn. Despite that some materials can be
categorized either from their particular molecular or atomic spectral
features, the enhancement revealed by an advanced combination of
Raman and LIBS has been disclosed. As demonstrated, when the LIBS
response is not sufficient for distinction between organics, the fusion
with the Raman counterpart leads to substantive improvement in the
differentiation ability. Similarly, when Raman spectroscopy cannot
report exclusive information on the identity of compounds, progress
in categorization from the input of LIBS data is beyond any doubt. In
this context, the assembling of the spectral information into bi-
dimensional estimators emphasizes more the differences between
compounds as compared to their corresponding mono-dimensional
attributes. Furthermore, it has been proved that by using a specific
code integrated by two 2D estimators, the declaration on the identity
of the interrogated target offers an absolute reliability.

The inspected targets are easily identified from the matching of
their codes with those previously stored in a small library exhibiting
correlation rates far below of 0.8. The proposed data fusion strategy
fully exploits the orthogonal atomic and molecular spectral

information; thereby proving the synergy of the two spectral counter-
parts. Further investigation on the robustness and ruggedness of the
codes in the identification of compounds in presence of possible
interferences as well as complex mixtures, are right now under
development. Furthermore, testing on the performance of approaches
to identify residues left on surfaces of supports is also in progress.
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